

केंद्रीयविद्यालयसंगठन/KENDRIYA VIDYALAYA SANGATHAN हैदराबादसंभाग/HYDERABAD REGION

QUESTION BANK OF MULTIPLE-CHOICE QUESTIONS 2021-22 CLASS XII MATHEMATICS

CHIEF PATRON SRI K. SASEENDRAN, DEPUTY COMMISSIONER

PATRON

DR (SMT) V. GOWRI, ASSISTANT COMMISSIONER COORDINATORS

- 1. SRI GOVINDU MADDIPATLA PRINCIPAL ,INS KALINGA
- 2. SRI K SRINIVASA RAO PRINCIPAL, NFC GATKESWAR

PREPARED & VETTED BY

Ms. G Sabitha, KV Steel Plant	Mr. V Simhadri, kvsvn No.2
Mr. K Rama Krishna, кv vzм	Mr. G SrinivasaRao , KV -2 NSB
Mr. R S N Acharyuly, KV , MIK	Mr.RaghuVara Prasad, KV-1, NSB
Ms. L Surya Chandra, KV NPA	Mr. Vamsi Krishna E V L N, KV-1 Tirupati
Ms. M Rajeswari, KV-1,Uppal	Ms.G Sudha Reddy, kv-2 AFA dundigal
Mr. T Narisimha, KV-2, Golkd	Mr. N Brahmaiah, KV NTC
Mr. P Veerababu, Kv Picket	Mr. Rajendraprasad V, Kv NFC

1.RELATIONS AND FUNCTIONS

MULTIPLE CHOICE QUESTIONS

1.	If $A = \{5,6,7\}$ and let $R = \{5,5\}, (6,6)\}, (7,7), (5,6), (6,5), (6,7), (7,6)\}$. Then R is					
	A) Reflexive, symmetric but not Transitive	B)) Symmetric, transitive but not reflexive				
	C) Reflexive, Transitive but not symmetric	D) an equivalence relation				
2.	Let R be a relation defined on Z as follows:					
	$(a,b) \in R \Leftrightarrow a^2 + b^2 = 25$. Then Domain of R	R is				
	A)){3,4,5}	B)) {0,3,4,5}				
	C)){0,±3,±4,±5}	D)) None of these	1			
3.	The maximum number of equivalence relation	ns on the set A= {1, 2, 3} is				
	A) 1	B) 2	l			
	C) 3	D)5				
4.	Consider the set $A = \{1, 2\}$. The relation on A reflexive is	which is symmetric but neither transitive nor	_			
	A){(1,1) (2,2) }	B){ }				
	C){(1,2)}	D) { (1,2) (2,1) }				
5.	If $A = \{d, e, f\}$ and let $R = \{(d, d), (d, e), (e, d), (e, e)\}$. Then R is					
	A) eflexive, symmetric but not Transitive	B) Symmetric, transitive but not reflexive				
	C) Reflexive, Transitive but not symmetric	D) an equivalence relation				
6.	Let R be a reflexive relation on a finite set A l ordered pairs in R,then	having n elements and let there be m				
	A)m < n	B)m > n	_			
	C)m = n	D)none of these				
7.	The number of elements in set A is 3. The number of A is	mber of possible relations that can be	1			
	A)8	B)4				
	C)64	D)512				
8.	The number of elements in Set A is 3. The nu	mber of possible reflexive relations that				
	A) 64	B) 8				
	0)512					
9	C)312 The number of elements in set P is 4 The nu	D) 4 mber of possible symmetric relations that can	 I			
	be defined on P is		I			
	A) 16	B) 32	·			
	C)512	D)1024				

10.	N is the set of all natural numbers and $(a, b) R (c, d)$ if and only if $a + d = b + d$	R is a c ,then	relation on N x N defined by R is	
	A)only Reflexive	B)only	y symmetric	
	C) only transitive D) equ		uivalence relation	
11.	The relation R defined on the set $A = \{$	[1,2,3,4]	5}, by $R = \{(a, b): a^2 - b^2 > 16\}$ is	given by
	A){(1,1), (2,1), (3,1), (4,1), (2,3)}		B){(2,2), (3,2), (4,2), (2,4), }	
	C {(3,3), (4,3), (5,4), (3,4)}		D) none of these	
12.	Let A={p,q,r}.The relation which is not	an equ	ival nce relation on A is	
	A){(p,p),(q,q),(r,r)}		B) {(p,p),(q,q),(r,r),(p,q),(q, p)}	
	C) {(p,p),(q,q), (r,r),(r,q),(q, r)}		D) none of these	
13.	Let R be a relation on the set N of natural numbers defined by aRb if and only if a divides b .Then R is			
) Reflexive and Symmetric		B) Transitive and Symmetric	
C) equivalence D) Reflexive and Trans symmetric		 D) Reflexive and Transitive but not symmetric 		
14.	Consider the set A={4,5}. The smallest equivalence relation (i.e the relation with the least number of elements), is			
	A) { }		B) {(4,5)}	
	C) {(4,4),(5,5)} D) {(4,5),(5,4)}		D) {(4,5),(5,4)}	
15.	Let P = {a,b,c}.Then the number of Equivalence relations containing (a,b) is			
	A) 1 B) 2			
	C) 3 D) 4			

ANSWERS:

1	А	2	С	3	D	4	D	5	В
6	С	7	D	8	А	9	D	10	D
11	D	12	D	13	D	14	С	15	В

ASSERTION AND REASONING TYPE QUESTIONS

1.	Assertion (A)	If $n(A) = p$ and $n(B) = q$ then the number of relations from A to B is 2^{pq} .		
	Reason(R)	A relation from A to B is a subset of A x B.		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
Ε	Both A and R are	e false		

2.	Assertion (A)	If n (A) =m, then the number of reflexive relations on A is m			
	Reason(R)	A relation R on the set A is reflexive if (a, a) $\in R$, $\forall a \in A$.			
Α	Both A and R are	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.				
С	A is true but R is false				
D	A is false but R is true				
Е	Both A and R are	e false			

3.	Assertion (A)	Domain and Range of a relation $R = \{(x, y): x - 2y = 0\}$ 0} defined on the set $A =$ $\{1, 2, 3, 4\}$ are respectively $\{1, 2, 3, 4\}$ and $\{2, 4, 6, 8\}$		
	Reason(R)	Domain and Range of a relation R are respectively the sets $\{a: a \in A \text{ and } (a, b) \in R.\}$ and $\{b: b \in A \text{ and } (a, b) \in R\}$		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
E	Both A and R are false			

4.	Assertion (A)	A relation R ={ $(1,1),(1,2),(2,2),(2,3)(3,3)$ }defined on the set A={1,2,3} is reflexive.		
	Reason(R)	A relation R on the set A is reflexive if $(a,a) \in R, \forall a \in A$		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
Ε	Both A and R are	e false		

5.	Assertion (A)	A relation R ={ $(1,1),(1,2),(2,2),(2,3)(3,3)$ }defined on the set A={1,2,3} is symmetric		
	Reason(R)	A relation R on the set A is symmetric if $(a,b) \in R \implies (b,a) \in R$		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
Ε	Both A and R are	e false		

6.	Assertion (A)	A relation R ={ (1,1),(1,3),(1.5),(3,1)(3,3),(3,5)}defined on the set		
		A={1,3,5} is transitive.		
	Reason(R)	A relation R on the set A symmetric if $(a, b) \in Rand(a, c) \in$		
		$R \Longrightarrow (a, c) \in R)$		
•	Both A and R ar	a true and R is the correct explanation of A		
A	Both A and K are true and K is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
Ε	Both A and R are	e false		

7.	Assertion (A)	A relation R ={ (1,1),(1,3),(3,1)(3,3),(3,5)}defined on the set A={1,3,5} is reflexive.	
	Reason(R)	A relation R on the set A is transitive if $(a, b) \in R$ and $(b, c) \in R \implies (a, c) \in R$	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is	s false	

- **D** A is false but R is true
- E Both A and R are false

8.	Assertion (A)	The function f: $R \rightarrow R$, $f(x)= x $ is not one-one	
	Reason(R)	The function $f(x)= x $ is not onto .	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
Ε	Both A and R are	false	

9.	Assertion (A)	A={1,2,3},B={4,5,6,7} ,f={(1,4),(2,5),(3,6)} is a function from A to		
		B.Then f is one-one		
	Reason(R)	A function f is one –one if distinct elements of A have distinct images in B.		
Α	Both A and R ar	e true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
Ε	Both A and R are false			

10.	Assertion (A)	Consider the function f:R \rightarrow R defined by $f(x) = \frac{x}{x^2+1}$. Then f is	
		one – one	
	Reason(R)	f(4)=4/17 and f(1/4)=4/17	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R i	s true	
Ε	Both A and R ar	e false	

11.	Assertion (A)	Assertion (A) Consider the function f: $R \rightarrow R$ defined by $f(x) = x^3$. Then f is one one			
	Reason(R)	Every polynomial function is one-one			
Α	Both A and R are true and R is the correct explanation of A				
В	Both A and R are true but R is NOT the correct explanation of A.				
С	A is true but R is false				
D	A is false but R is true				
Ε	Both A and R are	e false			

12.	Assertion (A)	n(A) =5, n(B) =5 and f : $A \rightarrow B$ is one-one then f is bijection		
	Reason(R)	If n(A) = n(B) then every one-one function from A to B is onto		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
E	Both A and R are false			

13.	Assertion (A) The range of the function $\frac{x^2}{1+x^2}$ is [0, 1)		
	Reason(R)	If $f(x) \le g(x)$ then the range of $\frac{f(x)}{g(x)}$, $g(x) \ne 0$ is [0, 1)	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
Ε	Both A and R ar	e false	

14.	Assertion (A)	If X = { 0, 1, 2 } and the function $f: X \to Y$ defined by f(x) =		
		x^{2} -2 is surjection then Y = { -2, -1, 0 }		
	Reason(R)	If $f: X \to Y$ is surjective if $f(X) = Y$		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R	A is false but R is true		
E	Both A and R ar	e false		

15.	Assertion (A)	A function f: $A \rightarrow B$, cannot be an onto function if n (A) <n (b).<="" th=""></n>		
	Reason(R)	A function f is onto if every element of co-domain has at least one pre-image in the domain		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R i	s true		
E	Both A and R are false			

16.	Assertion (A)	A, B are two sets such that $n(A)=p$ and $n(B)=q$, The number of functions from A onto B is q^{p} .		
	Reason(R)	Every function is a relation		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R i	s true		
Ε	Both A and R are	e false		

17.	Assertion (A)	 A, B are two sets such that n(A)=m and n(B)=n. The number of one-one functions from A onto B is n_{p_m}, if n≥ m . 			
	Reason(R)	A function f is one –one if distinct elements of A have distinct images in B			
Α	Both A and R are true and R is the correct explanation of A				
В	Both A and R are true but R is NOT the correct explanation of A.				
С	A is true but R is false				
D	A is false but R is true				
Ε	Both A and R are	e false			

CASE STUDY TYPE QUESTIONS

CS- 1

Manikanta and Sharmila are studying in the same KendriyaVidyalaya in Visakhapatnam. The distance from Manikanta's house to the school is same as distance from Sharmila's house to the school. If the houses are taken as a set of points and KV is taken as origin, **then answer the below questions based on the given information**; (M for Manikanta's house and S for Sharmila's house)

- i. The relation *R* is given by $R = \{ (M, S): Distance of point M from origin is same as distance of point S from origin <math>\}$ is
 - a) Reflexive, Symmetric and Transitive
 - b) Reflexive, Symmetric and not Transitive
 - c) Neither Reflexive nor Symmetric
 - d) Not an equivalence relation
- ii. Suppose Dheeraj's house is also at the same distance from KV then
 - a) OM ≠ OS
 - b) OM ≠ OD
 - c) $OS \neq OD$
 - **d)** OM = OS= OD
- iii. If the distance from Manikanta, Sharmila and Dheeraj houses from KV are same, then the points form a
 - a) Rectangle
 - b) Square
 - c) Circle
 - d) Triangle
- iv. Let $R = \{(0,3), (0,0), (3,0)\}$, then the point which does not lie on the circle is
 - a) (0,3)
 - b) (0,0)
 - c) (3,0)
 - d) None of these

CS- 2

Priya and Surya are playing monopoly in their house during COVID. While rolling the dice their mother Chandrika noted the possible outcomes of the throw every time belongs to the set $\{1, 2, 3, 4, 5, 6\}$. Let A denote the set of players and B be the set of all possible outcomes.

Then $A = \{P, S\}$ $B = \{1, 2, 3, 4, 5, 6\}$. Then answer the below questions based on the given information

- i. Let $R: B \rightarrow B$ be defined by
 - $R = \{(a, b) both a and b are either odd or even\}, then R is$
 - a) Equivalence relation
 - b) Not Reflexive but symmetric, transitive
 - c) Reflexive, Symmetric and not transitive
 - d) Reflexive, transitive but not symmetric
- ii. Chandrika wants to know the number of **functions**for*A*to *B*. How many number of **functions** are possible?
 - a) 6²
 - b) 2⁶
 - c) 6!
 - d) 2¹²

iii. Let *R* be a relation on *B* defined by

- $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$. Then R is
 - a) Symmetric
 - b) Reflexive
 - c) Transitive
 - d) None of these
- iv. Let $R: B \rightarrow B$ be defined by

 $R = \{(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$ then R is

- a) Symmetric
- b) Reflexive and Transitive
- c) Transitive and Symmetric
- d) Equivalence Relation
- v. Chandrika wants to know the number of **relations**for*A*to *B*. How many number of **relations** are possible?
 - a) 6²
 - b) 2^{6}
 - c) 6!
 - **d**) 2¹²

CS- 3

In two different societies, there are some school going students – including girls as well as boys. Satish forms two sets with these students, as his college project

Let $A = \{a_1, a_2, a_3, a_4, a_5\}$ and $B = \{b_1, b_2, b_3, b_4\}$ where a_i 's, b_i 's are the school going students of first and second society respectively.

Using the information given above, answer the following question

- i. Satish wishes to know the number of reflexive relations defined on set *A*. How many such relations are possible?
 - a) 0
 - b) 2⁵
 - c) 2¹⁰
 - d) 2²⁰
- ii. Let $R: A \to A, R = \{(x, y): x \text{ and } y \text{ are students of same sex}\}$. Then relation R is
 - a) Reflexive only
 - b) Reflexive and symmetric but not transitive
 - c) Reflexive and transitive but not symmetric
 - d) An equivalence relation
- iii. Satish and his friend Rajat are interested to know the number of symmetric relations defined on both the sets A and B, separately. Satish decides to find the symmetric relation on set A, while Rajat decides to find symmetric relation on set B. What is difference between their results?
 - a) 1024
 - b) 2¹⁰(15)
 - c) $2^{10}(31)$
 - d) 2¹⁰(63)
- iv. Let $R: A \to B, R = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_3, b_3), (a_4, b_2), (a_5, b_2)\},\$ then R is
 - a) Neither one-one nor onto
 - b) One-one but not onto
 - c) Only onto but not one-one
 - d) One-one and onto both
- v. To help Satish in his project, Rajat decides to form onto function from set A to itself. How many such functions are possible?
 - a) 342
 - b) 243
 - c) 729
 - d) 120

CS-4

The maths teacher of class XII dictates amaths problem as follows.

' Draw the graph of the function, f of x is equal to modulus of x plus three minus one in the closed interval -3 to +3'

Three students **R**akesh, **S**ravya and **N**avyahaveinterpreted the same dictation in three different ways and they have noted the function as f(x) = |x + 3 - 1|, f(x) = |x| + 3 - 1 and f(x) = |x+3| - 1 respectively. All three have drawn the graphs correctly for their respectivefunctions

Based on the above information answer the following.

- i. Sravya 's graph in 'V shape ' with vertex
 - A) (-3, 1)
 - B) (3,-1)
 - C) (0, 2)
 - D) (2,0)
- ii. observe the adjacent figure. This is the graph of
 - A) Rakhesh
 - B) Sravya
 - C) Navys
 - D) None of them

- iii The distance between the vertices of the graphs of Rakesh and Navys graphs is
 - A) 1
 - B) √2
 - C) $\sqrt{3}$
 - D) 0

iv observe the adjacent figure. This is the graph of

A)Rakhesh

B)Sravya

C)Navys

D)None of them

v. The function $f(x) = \begin{cases} -x - 4, & \text{if } x \le -3 \\ x + 2, & \text{if } x > -3 \end{cases}$ is the another form of the function

A)Rakhesh

B)Sravya

C)Navys

D)None of them

Answers

ASSERTION AND REASONING

1	А	2	D	3	D	4	А	5	D
6	С	7	D	8	В	9	A	10	D
11	С	12	A	13	С	14	A	15	A
16	В	17	А						

CASE STUDY

CS-1	I) A	II) D	III) C	iv) B	
CS-2	I) A	II) A	III) D	iv) B	V) D
CS-3	i) D	ii) D	iii) C	iv) A	v) D
CS-4	i) D	ii) D	iii) B	iv) A	v) C

Multiple choice questions -

1.	If $\alpha = \tan^{-1}\left(\tan\frac{5\pi}{4}\right)$ and $\beta = \tan^{-1}$	$\left(-\tan \frac{2\pi}{3}\right)$ then
	a) $4\alpha = 3\beta$	b) $3\alpha = 4\beta$
	C) $\alpha - \beta = \frac{7\pi}{12}$	d) None of these
2.	If $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$ then	n the value of x is
	a) 0	b) -1
	c) 1	d) $\frac{1}{2}$
3.	The value of tan ⁻¹ 2+tan ⁻¹ 3 is :	
	a) $\frac{-\pi}{4}$	b) $\frac{\pi}{4}$
	c) $\frac{3\pi}{4}$	d) π
4.	The value of tan ⁻¹ x + tan ⁻¹ 3 :	= tan ⁻¹ 8 then the value of x is :
	$\left \begin{array}{c} \frac{1}{3} \end{array} \right $	c) 3
	b) 5 d)	$\frac{1}{5}$
5.	The value of $\tan\left(\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right)$	is
	a) $\frac{13}{6}$	b) $\frac{17}{6}$
	C) $\frac{19}{6}$	d) $\frac{23}{6}$
6.	If $\tan^{-1}(1-x)$, $\tan^{-1}x$ and $\tan^{-1}(1-x)$	(1+x) are in AP , then the value of x^3+x^2 is:

	a)0	b) 1	
	c) -1	d) x – 1	
7.	If $\tan^{-1}x + \tan^{-1}y + \frac{1}{2}$	tan ⁻¹ $z = \pi$, then the value of x+y+z is	
	a) 0	b) $\frac{1}{2}$	
	c) $\frac{\pi}{2}$	d) xyz	
8.	If $\tan \frac{-1}{x} \frac{a}{x} + \tan \frac{-1}{x} \frac{b}{x} = \frac{\pi}{2}$, th	en the value of x is	
	a) ab	b) \sqrt{ab}	
	c) (ab) ²	d) None of these	
9.	If cos ⁻¹ x - sin ⁻¹ x=0 , then	the value of x is	
	a)0	b) 1	
	c) $\frac{1}{\sqrt{2}}$	d) $\frac{\sqrt{3}}{2}$	
10	The value of cos ⁻¹ (sinx) +sin ⁻¹ (cosx) is :		
	a) $\frac{\pi}{2}$	b) π - x	
	C) $\pi - 2x$	d) $\frac{\pi}{2} - x$	
11.	If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$, then	the value of cos ⁻¹ x +cos ⁻¹ y is :	
	a). $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	
	C) π	d) $\frac{\pi}{6}$	
12.	$\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{2}{11}$ is equal t	o :	
	a)0	b) $\frac{1}{2}$	
	c) -1	d) None of these	

13.	Sin ⁻¹ x - cos ⁻¹ x = $\frac{\pi}{6}$, then x is equal to :		
	a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	
	c) $-\frac{1}{2}$	d) $-\frac{\sqrt{3}}{2}$	
14.	The value of $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) +$	$\sin^{-1}\left(\sin\frac{\pi}{3}\right) $ is	
	a) π	b) $\frac{\pi}{2}$	
	c) $\frac{3\pi}{4}$	d) $\frac{4\pi}{3}$	
15.	The value of $\tan\left(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right)$ is		
	a) $\frac{7}{17}$	b) - $\frac{7}{17}$	
	c) $\frac{7}{12}$	d) - $\frac{7}{12}$	
16.	The value of $\cos\left[\tan^{-1}\frac{3}{4}\right]$ is		
	a) $\frac{3}{5}$	b) $\frac{3}{5}$	
	c) $\frac{4}{5}$	d) None of these	
17.	If $\cot^{-1}\left(\frac{-1}{5}\right) = x$ and x	If $\cot^{-1}\left(\frac{-1}{5}\right) = x$ and x is in second quadrant then the value of sinx is	
	a) $\frac{1}{\sqrt{26}}$	b) $\frac{5}{\sqrt{26}}$	
	c) $\frac{-5}{\sqrt{26}}$	d) None of these	

18.	The value of $\sin^{-1}\left(-\frac{1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$ is			
	a) $\frac{\pi}{2}$	b) - 🗄	$\frac{\pi}{2}$	
	c) $\frac{3\pi}{2}$	d)	None of these	
19.	If $\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$, the	n value of x is :	
	a) $\frac{1}{2}$	k	b) $\frac{1}{4}$	
	c) $\frac{1}{6}$	d)	None of these	
20.	Find the value of tan	-1 \sqrt{3} -	$-\sec^{-1}(-2) + \cos ec^{-1}\left(\frac{2}{\sqrt{3}}\right)$	
	a) $\frac{\pi}{3}$		b) $\frac{-\pi}{3}$	
	c) 0		d) $\frac{4\pi}{3}$	
21.	Find the value of $\cos\left[\sin^{-1}\frac{1}{4} + \sec^{-1}\frac{4}{3}\right]$			
	a) $\frac{3\sqrt{15} - \sqrt{7}}{6}$		b) $\frac{3\sqrt{15} + \sqrt{7}}{6}$	
	c) $\frac{\sqrt{7} - 3\sqrt{15}}{16}$		d) $\frac{3\sqrt{15} - \sqrt{7}}{4}$	
22.	The value of sin [cot	$^{-1}\left\{\cos\right\}$	(tan ⁻¹ 1)}] is	
	a) $\frac{2}{3}$		b) $\frac{\sqrt{2}}{\sqrt{3}}$	
	c) $\frac{1}{\sqrt{2}}$		d) $\sqrt{\frac{3}{2}}$	
23.	Find the value of sec ²	tan ⁻¹	(2)]+ cos ec ² [cot ⁻¹ (3)]	
	a) 5		b) 10	
	c) 15		d) 20	

24.	If $4\sin^{-1} x + \cos^{-1} x = \pi$, then find the value of x			
	a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$		
	c) $\frac{-1}{2}$	d) None of these		
25.	If $\tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$, then find the value of x			
	a)3	b) $\sqrt{3}$		
	c) $\frac{1}{\sqrt{3}}$	d) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$		
26.	If $\tan \left[\frac{1-x}{1+x}\right] = \frac{1}{2} \tan^{-1} x$, then find the value of x			
	a) $\frac{1}{2}$	b) $\sqrt{3}$		
	c) $\frac{1}{\sqrt{3}}$	d)2		
27.	If $\sin^{-1}\left[\frac{x}{5}\right] + \cos^{-1}\left[\frac{5}{4}\right] = \frac{\pi}{2}$, th	en find the value of x		
	a)4	b) 5		
	c) 3	d) 1		
28.	Which of the following corresponds to the principal value branch of tan ⁻¹ ?			
	(a) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	(b) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$		
	(c) $\left[0, \frac{\pi}{2}\right]$	(d) $(0, \pi)$		
29.	Evaluate $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$			
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$		

	C) $-\frac{\pi}{2}$	(d) $\frac{-\pi}{3}$
30.	If $\tan^{-1} x = \frac{\pi}{10}$ for some $x \in \mathbb{R}$, then the	value of $\cot^{-1} x$ is
	a) $\frac{\pi}{5}$	(b) $\frac{2\pi}{5}$
	(C) $\frac{3\pi}{5}$	d) $\frac{4\pi}{5}$

Solutions

Question	Answer	Question	Answer	Question	Answer
No		No		No	
1	а	11	В	21	а
2	а	12	D	22	b
3	С	13	В	23	C
4	d	14	A	24	а
5	b	15	В	25	b
6	b	16	С	26	С
7	d	17	В	27	С
8	b	18	С	28	а
9	C	19	A	29	d
10	C	20	С	30	b

ASSERTION AND REASONING TYPE QUESTIONS

1. Assertion (A)

$$\cos ec^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) > \sec^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right)$$

Reason(R)
 $\cos ec^{-1}(x) > \sec^{-1}(x)$ if $1 < x < \sqrt{2}$
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false

3. Assertion (A) If
$$0 < x \le \frac{\pi}{2}$$
, then $\sin^{-1}(\cos x) + \cos^{-1}(\sin x) = \pi - 2x$
Reason(R) $\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$ for all $x \in [-1,1]$
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false

4. Assertion (A)

Reason(R)

1.
$$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{77}{85}$$

 $\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) \text{for } -1 \le x, y \le 1$
 $x^2 + y^2 \le 1$

A Both A and R are true and R is the correct explanation of A

B Both A and R are true but R is NOT the correct explanation of A.

C A is true but R is false

D A is false but R is true

E Both A and R are false

5. Assertion (A) $\cos^{-1} x = 2 \sin^{-1} \sqrt{\frac{1-x}{2}} = 2 \cos^{-1} \sqrt{\frac{1+x}{2}}$ Reason(R) $1 + \cos A = 2 \cos^{-2} \left(\frac{A}{2}\right) \text{ and } 1 - \cos A = 2 \sin^{-2} \left(\frac{A}{2}\right)$

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- c A is true but R is false
- D A is false but R is true
- E Both A and R are false

Assertion (A) 6. If $x = \frac{1}{5\sqrt{2}}$ then $\left\{x \cos(\cot^{-1} x) + \sin(\cot^{-1} x)\right\}^2 = \frac{51}{50}$ Reason(R) $\tan\left[\cos^{-1}\left(\frac{1}{5\sqrt{2}}\right) - \sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right] = \frac{29}{3}$ Both A and R are true and R is the correct explanation of A Α Both A and R are true but R is NOT the correct explanation of A. B A is true but R is false С A is false but R is true D Both A and R are false Ε Assertion (A) $\tan^{-1}\left[x + \sqrt{1 + x^2}\right] = \frac{\pi}{2} - \frac{1}{2} \cot^{-1}$ 7.

Reason(R)
$$\sin^{2} \left[2 \tan^{-1} \sqrt{\frac{1+x}{1-x}} \right] = 1 - x^{2}$$

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

8. Assertion (A)
$$\tan^{-1}\left(\frac{2}{5}\right) + \tan^{-1}\left(\frac{3}{7}\right) = \frac{\pi}{4}$$

Reason(R)

$$\tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y-x}{y+x}\right) = \frac{\pi}{4}$$

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

9. Assertion (A)

$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$$

Reason(R)
for x>0, y>0, xy<1, $\tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false
10. Assertion (A)
 $\tan^{-1} x + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2}$

Reason(R)
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
for all $x \in R$ ABoth A and R are true and R is the correct explanation of ABBoth A and R are true but R is NOT the correct explanation of A.CA is true but R is falseDA is false but R is trueEBoth A and R are false

Assertion (A) 12. The solution of $\sin^{-1}(6x) + \sin^{-1}(6\sqrt{3}x) = \frac{-\pi}{2}$ is $x = \frac{1}{12}$ Reason(R) sin $^{-1} x$ is defined for $|x| \le 1$ Both A and R are true and R is the correct explanation of A Α Both A and R are true but R is NOT the correct explanation of A. В A is true but R is false С A is false but R is true D Both A and R are false Ε 13. Assertion (A) $\cos^{-1} x - \sin^{-1} x = 0$, then $x = \frac{1}{\sqrt{2}}$

Reason(R)
$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$$
ABoth A and R are true and R is the correct explanation of ABBoth A and R are true but R is NOT the correct explanation of A.CA is true but R is falseDA is false but R is true

E Both A and R are false

14. Assertion (A)
$$\cot\left[\frac{\pi}{2} - 2 \cot^{-1} 3\right] = 7$$
Reason(R) $\sin^{-1}\left(\frac{4}{5}\right) + 2 \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2}$ **A**Both A and R are true and R is the correct explanation of A**B**Both A and R are true but R is NOT the correct explanation of A.**C**A is true but R is false**D**A is false but R is true**E**Both A and R are false

CASE STUDY TYPE QUESTIONS

CS – 1

Two men on either side of a temple of 30 meters high observe its top at the angles of elevation α and β respectively. (as shown in the figure above). The distance between the two men is $40\sqrt{3}$ meters and the distance between the first person A and the temple is $30\sqrt{3}$ meters. Based on the above information answer the following.

1. $\angle CAB = \alpha =$ (A) $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (B) $\sin^{-1}\left(\frac{1}{2}\right)$ (C) $\sin^{-1}(2)$ (D) $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ 2. $\angle CAB = \alpha =$ (A) $\cos^{-1}\left(\frac{1}{5}\right)$ (B) $\cos^{-1}\left(\frac{2}{5}\right)$ (C) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (D) $\cos^{-1}\left(\frac{4}{5}\right)$ 3. $\angle BCA = \beta =$ (A) $\tan^{-1}\left(\frac{1}{2}\right)$ (B) $\tan^{-1}(2)$ (C) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (D) $\tan^{-1}(\sqrt{3})$ 4. $\angle ABC =$ (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{3}$

The Government of India is planning to fix a hoarding board at the face of the building on the road of a busy market for awareness on COVID – 19 protocol. Ram, Robert and Rahim are the three engineers who are working on the project. "A" is considered to be a person viewing the hoarding board 20 meters away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. "C" is at the height of 10 meters from the ground level. For the viewer A, the angle of elevation of "D" is double the angle of elevation of "C". The angle of elevation of "E" is the triple the angle of elevation of "C" for the same viewer. Look at the figure given and based on the above information answer the following.

- 1. The measure of $\angle CAB$
 - (A) $\tan^{-1}(2)$
 - (B) $\tan^{-1}\left(\frac{1}{2}\right)$
 - (C) $\tan^{-1}(1)$
 - (D) $\tan^{-1}(3)$
- 2. The measure of $\angle DAB$

(A)
$$\tan^{-1}\left(\frac{3}{4}\right)$$

(B) $\tan^{-1}(3)$
(C) $\tan^{-1}\left(\frac{4}{3}\right)$
(D) $\tan^{-1}(4)$
3. The measure of
(A) $\tan^{-1}(11)$
(B) $\tan^{-1}(3)$
(C) $\tan^{-1}\left(\frac{2}{11}\right)$
(D) $\tan^{-1}\left(\frac{2}{11}\right)$

 $\angle EAB$

(D) $\tan^{-1}\left(\frac{11}{2}\right)$

4 A^{\dagger} is the another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between $\angle CA^{\dagger}B$ and $\angle CPB$

CS- 2

(A)
$$\tan^{-1}\left(\frac{1}{12}\right)$$

(B) $\tan^{-1}\left(\frac{1}{8}\right)$
(C) $\tan^{-1}\left(\frac{2}{5}\right)$
(D) $\tan^{-1}\left(\frac{11}{21}\right)$

Answers

ASSER	ASSERTION AND REASONING											
1	A	2	D	3	A		4	A		5		A
6	В	7	В	8	A		9	A		10		A
11	С	12	D	13	A		14	В				
CASE S	TUDY											
CS-1	I)B		II) C	2		III)	D		iv)C			
CS-2	I)B		II) C	2		III)	D		iv)	Α	V)	

Hints for selected questions :

3.statement 1 : $\sin^{-1}(\cos x) + \cos^{-1}(\sin x) = \frac{\pi}{2} - \cos^{-1}(\cos x) + \frac{\pi}{2} - \sin^{-1}(\sin x)$

= $\pi - 2x$

5.put x = $cos \theta$ to prove statement **1**

7. Put $x = \cot \theta$ in statement 1 and .put x = $\cos \theta$ in statement 2

11. put x = $cos \theta$ to prove statement **1**

12. sin
$$^{-1}x + \sin ^{-1}y = \sin ^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right)$$

3.Matrices

Q1.	If a matrix has 8 elements then the total number of different orders of writing the matrices.			
	A) 1	B)2		
	C)3	D)4		
Q2.	Let A and B are two matrices and A+B and	AB both exist, then		
	A)A and B are square matrices.	B)A and B are mXn matrices.		
	C) A and B are square matrices of same order.	D)None of these.		
Q3.	The number of all possible matrices of ord	er 3x3 with each entry 1 or 2 is		
	A) 27	B)18		
	C)81	D)512		
Q4.	If $A = (a_{ij})_{mxn}$ is a scalar matrix, if			
	$A)a_{ij} = 0, for all i \neq j.$	B) $a_{ij} = constant$, for all $i = j$ and $a_{ij} =$		
		$0, for all i \neq j.$		
	$C)a_{ij} = 0, f \text{ or all } i = j.$	$D_{ij} = constant, for all i =$		
Q5.	If $A = (a_{ij})_{mxn}$ with $a_{ij} = \frac{(i-j)^2}{2}$, then $A =$			
	$ A) \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} $	$B) \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix}$		
	$C) \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$	$D\begin{pmatrix} -\frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix}$		
Q6.	If A and B are matrices with $AB = 0$ of	and $BA = 0$, then		
	A) A=O or B=O	B) Either A=O or B=O		
	C) A=O and B=O	D) None of these.		
Q7.	If A and B are matrices with $AB = 0$,	then		
	A) A=O or B=O	B) Either A=O or B=O		
	C) A=O and B=O	D) None of these.		
Q8.	From the following, Identify the wrong sta	tement.		
	A) Matrix multiplication satisfies	B) Matrix multiplication is distributive		
	associative property.	over addition.		
	c) watrix multiplication satisfies	D) For every non-singular square matrix,		
Q9.	$ \begin{array}{c} \hline commutative property. & inverse exists. \\ \hline If A(x) = \begin{pmatrix} cosx & -sinx & 0\\ sinx & cosx & 0\\ 0 & 0 & 1 \end{pmatrix}, \text{ then } A(x).A(y) = \\ \hline \end{array} $			

	A) A(x.y)	B) A(x+y)				
	C) A(x-y)	D) None of these.				
Q10.	(<i>AB</i>)'=					
	A) <i>A'B'</i>	B) <i>B'A'</i>				
	C)(BA)'	D) None of these				
Q11.	Let A be a square matrix and it is expressed	as the sum of symmetric and skew				
	symmetric matrices. Then symmetric part $a^{1}(A + A^{T})$	$\frac{B}{A + A^T}$				
	$\frac{A}{2} \begin{pmatrix} A + A \end{pmatrix}$					
	$C)^{-}_{2}(A - A^{T})$	$D)^{-}_{2}(A' - A)$				
Q12.	Let A be a square matrix and it is expressed	as the sum of symmetric and skew				
	symmetric matrices. Then skew-symmetric $\Delta \frac{1}{2}(A + A^{T})$	$B(A + A^{T})$				
	$\frac{(A - A^T)}{(A - A^T)}$	$D)^{\frac{1}{2}}(A^{T} - A)$				
013.	If A and B are symmetric matrices of same	order, then AB - BA is a				
Q_20.	A) Skew Symmetric matrix	B) Zero matrix				
	C) Identity matrix	D) Symmetric matrix				
Q14.	$f_{A} = (cosx - sinx)$ and $A + A^{T} = L$	then the veloce of wie				
	$\frac{\text{If } A = (sinx cosx), and A + A' = 1, then the value of x is}{\pi}$					
	$A)\frac{\pi}{6}$	$B)\frac{\pi}{3}$				
	$C)\frac{3\pi}{2}$	D)π				
Q15.	The principal diagonal elements of a skew symmetric matrix are					
	A) 1	B) 0				
	C) 0 or 1	D) None of these				
Q16.	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then what is AA^T	(where A^T is the transpose of A)?				
	A) O	B) I				
	C) 2I	D) 3I				
Q17.	If AB = C, where $A = \begin{pmatrix} x + y & y \\ x & x - y \end{pmatrix}$, B	$= \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $C = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$, then what is A^2				
	equal to?	· · · · · · · ·				
	$ A \begin{pmatrix} 4 & 8\\ -4 & -16 \end{pmatrix}$	$B \begin{pmatrix} 4 & -4 \\ 8 & -16 \end{pmatrix}$				
	(-4 -8) C) $(-4 -8)$	$(0) = 10^{2}$ D) $(-4 - 8)$				
Q18.	If $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, then $A^3 =$					
	$\frac{1}{(\cos 3\theta)} \sin 3\theta$	$(\cos^3\theta + \sin^3\theta)$				
	$\frac{1}{1} - \sin 3\theta \cos 3\theta$	$\frac{\partial \eta}{\partial t} = \sin^3 \theta \cos^3 \theta$				
	$\left \begin{array}{c} C \\ S \\ S \\ S \\ S \\ S \\ S \\ \theta \\ S \\ S \\ \theta \\ S \\ S$	$\left(\begin{array}{c} \text{D}\right) \begin{pmatrix} \cos^2 \theta & -\sin^2 \theta \\ \sin^3 \theta & \cos^3 \theta \end{pmatrix}$				

Q19.	What is the order of $\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} a & h & g \\ h & h & f \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$				
	$\begin{pmatrix} n & b & j \\ g & f & c \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix}$				
	A) 3x1	B)1x1			
	C)1x3	D)3x3			
Q20.	If $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then the value of A^4 is				
	$A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$B\begin{pmatrix} 1 & 1\\ 0 & 0 \end{pmatrix}$			
	$C)\begin{pmatrix} 0 & 0\\ 1 & 1 \end{pmatrix}$	$D\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$			
Q21.	The number of all possible matrices of orde	er 3 × 3 with each entry 0 or 1 is:			
	A) 27	B)81			
	C) 18	D)512			
Q22.	If $A = (a_{ij})_{mxn}$ is a square matrix, then				
	A) m <n< th=""><th>B) m>n</th></n<>	B) m>n			
	C) m=n	D) None of these			
Q23.	Which of the given values of x and y make $\begin{pmatrix} 3x+7 & 5\\ y+1 & 2-3x \end{pmatrix}, \begin{pmatrix} 5 & y-2\\ 8 & 4 \end{pmatrix}$	the following pair of matrices, equal.			
	A) $x = -\frac{1}{3}, y = 7$	B) $y = 7, x = -\frac{2}{3}$			
	C) $x = -\frac{1}{3}$, $y = -\frac{2}{3}$	D) Not possible to find.			
Q24.	Let X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$,				
	respectively. The restriction on n, k and p so that PY + WY will be defined are				
	A) k = 3, p = n	B) k is arbitrary, p = 2			
	C) p is arbitrary, k = 3	D) k = 2, p = 3			
Q25.	Let X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$, respectively. If $n = p$, then the order of the matrix $7X - 5Z$ is				
	A) p × 2	B) 2 × n			
	C) n × 3	D) p × n			
Q26.	If A and B are square matrices of the same	order, then (A + B) (A – B) is equal to			
	$A)A^2 - B^2$	$B)A^2 - BA - AB - B^2$			
	$C)A^2 - B^2 + BA - AB$	$D)A^2 - BA + B^2 + AB$			
Q27.	If $A = \begin{pmatrix} 2 & -1 & 3 \\ -4 & 5 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ 4 & 2 \\ 1 & 5 \end{pmatrix}$, t	then			
	A) Only AB is defined	B) Only BA is defined			
	C) AB and BA both are defined	D) AB and BA both are not defined.			

Q28.	The matrix $A = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{pmatrix}$ is				
	A) Scalar matrix	B) Diagonal matrix			
	C) unit matrix	D) Square matrix			
Q29.	If A and B are symmetric matrices of same	order, then $(AB' - BA')$ is a			
	A) Skew symmetric matrix	B) Null matrix			
	C) Symmetric matrix	D) None of these			
Q30.	$\frac{1}{\pi} \left(\begin{array}{cc} \sin^{-1}(x\pi) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & \cot^{-1}(\pi x) \end{array} \right), B = \frac{1}{\pi} \left(\begin{array}{cc} -\cos^{-1}(x\pi) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & -\tan^{-1}(\pi x) \end{array} \right), \text{then A-B}$				
	A) I	B) O			
	C) 2I	$D)\frac{1}{2}I$			
Q31.	If A and B are two matrices of the order 3 > then the order of matrix (5A – 2B) is	\times m and 3 \times n, respectively, and m = n,			
	A) m × 3	B)3X3			
	C) m × n	D)3Xn			
Q32.	The matrix $\begin{pmatrix} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{pmatrix}$ is a				
	A) diagonal matrix	B) symmetric matrix			
	C) skew symmetric matrix	D) scalar matrix			
Q33.	If A is matrix of order m × n and B is a matr then order of matrix B is	ix such that AB' and B'A are both defined,			
	A) m × m	B) n × n			
	C) n × m	D) m × n			
Q34.	If A and B are matrices of same order, ther	n (AB'–BA') is a			
	A) skew symmetric matrix	B) null matrix			
	C) symmetric matrix	D) unit matrix			
Q35.	If A is a square matrix such that $A^2 = I$, the	then $(A - I)^3 + (A + I)^3 - 7A$ is equal to			
	A) A	B) I-A			
	C) I+A	D) 3A			
Q36.	For any two matrices A and B, we have				
	A) AB = BA	B) AB ≠ BA			

	C) AB = O	D) None of the above			
Q37.	If $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, then the expression $A^3 - 2A^2$ is				
	A) Null matrix	B) Identity matrix			
	C) A	D) -A			
Q38.	If A is a 2×3 matrix and AB is a 2×5 matri	x, then B must be a			
	A) 3 × 5 matrix	B) 5 × 3 matrix			
	C) 3 × 2 matrix	D) 5 × 2 matrix			
Q39.	If $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $A^2 - kA - I =$ 0, where I is the identity matrix of order 2X2, then what is the value of k?				
	A) 4	B)-4			
	C) 8	D) -8			
Q40.	If α and β are the roots of the equation $1 + x + x^2 = 0$, then the $\begin{pmatrix} 1 & \beta \\ \alpha & \alpha \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ 1 & \beta \end{pmatrix}$ is equal to				
	$ \begin{array}{c} A \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ \hline C \begin{pmatrix} 1 & -1 \end{pmatrix} \end{array} $	$ \begin{array}{c} B \begin{pmatrix} -1 & -1 \\ -1 & 2 \end{pmatrix} \\ D \begin{pmatrix} -1 & -1 \\ \end{array} \end{pmatrix} $			
Q41.	-1 2)	$\frac{-1}{-1}$ $\frac{-2}{-1}$			
	1. $A^2 = -A$ 2. $A^3 = 4 A$ Which of the above is/are correct?	(1 -1)			
	A) 1 only	B) 2 only			
	C) Both 1 and 2	D) Neither 1 nor 2			
Q42.	If $A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & -3 & 4 \end{pmatrix}$, then the matrix X for which $2X + 3A = 0$ holds true is				
	$A) \begin{pmatrix} -\frac{3}{2} & 0 & -3 \\ -3 & -\frac{3}{2} & -6 \end{pmatrix}$	$B) \begin{pmatrix} \frac{3}{2} & 0 & -3 \\ 3 & -\frac{9}{2} & -6 \end{pmatrix}$			
	$C) \begin{pmatrix} \frac{3}{2} & 0 & 3\\ \frac{3}{2} & \frac{9}{2} & 6 \end{pmatrix}$	$D \begin{pmatrix} -\frac{3}{2} & 0 & 3 \\ -3 & \frac{9}{2} & -6 \end{pmatrix}$			
Q43.	If $(5 \times 1) \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = (20)$, then the value of	f x is			
	A) 7	B)-7			

	C) $\frac{1}{7}$	D) 0				
Q44.	A is of order m x n and B is of order p x q, addition of A and B is possible only if					
	A) m=p	B) n = q				
	C) n = p	D) m = p, n = q				
Q45.	If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$ is such that $A^2 = I$, then					
	A) $1 + \alpha^2 + \beta \gamma = 0$	B) $1 - \alpha^2 + \beta \gamma = 0$				
	C) $1 - \alpha^2 - \beta \gamma = 0$	D) $1 + \alpha^2 - \beta \gamma = 0$				
Q46.	Which one of the following statements is not true?					
	A) A scalar matrix is a square matrix	B) A diagonal matrix is a square matrix				
	C) A scalar matrix is a diagonal matrix	D) A diagonal matrix is a scalar matrix				
Q47.	47. If A is of order 3 x 4 and B is of order 4 x 3, then the order of BA is					
	A) 3x3	B)4x4				
	C) 4x3	D) not defined				
Q48.	A is order m x n and B is order p x q, AB exist only if					
	A) m = p	B) n = q				
	C) n = p	D) $m = p, n = q$				
Q49.	Which one of the following is true for any two square matrices A and B of same order?					
	$A) (AB)^T = A^T B^T$	$B(A^TB)^T = A^TB^T$				
	$C) (AB)^T = BA$	$D)(AB)^T = B^T A^T$				
Q50.	If $A = \begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix}$, then A^2 is					
	$A) \begin{pmatrix} 16 & 4 \\ 36 & 9 \end{pmatrix}$	$B)\begin{pmatrix} 8 & -4\\ 12 & -6 \end{pmatrix}$				
	$ C \begin{pmatrix} 4 & -2 \\ -6 & 3 \end{pmatrix}$	$D\binom{4}{6} - \frac{-2}{-3}$				

<u>Answers</u>

1.D	2.C	3.D	4.B	5.A	6.D	7.D	8.C	9.B	10.B
11.A	12.C	13.A	14.B	15.B	16.B	17.D	18.A	19.B	20.A
21.D	22.C	23.B	24.A	25.B	26.C	27.C	28.D	29.A	30.D
31.D	32.C	33.D	34.A	35.A	36.B	37.A	38.A	39.A	40.B
41.B	42.D	43.B	44.D	45.C	46.D	47.B	48.C	49.D	50.D

ASSERTION AND REASONING TYPE QUESTIONS

1.	Assertion (A)	If $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 4 \\ 0 & 5 \end{pmatrix}$. $(A + B)^2 = A^2 + 2AB + B^2$		
	Reason(R)	$AB \neq BA$		
Α	Both A and R are true and R is the correct explanation of A			
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is true			
Ε	Both A and R are false			

5.	Assertion (A)	Matrix A = $\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$, satisfies the equation $X^2 - 2X + 5I = 0$, then A is invertible.				
	Reason(R)	If a square matrix satisfies the equation $a_n X^n + a_{n-1} X^{n-1} + \dots +$				
		$a_1X + a_nI_2 = 0$ and $a_n \neq 0$, Then A is invertible				
Α	Both A and R a	Both A and R are true and R is the correct explanation of A				
В	Both A and R a	Both A and R are true but R is NOT the correct explanation of A.				
С	A is true but R is false					
D	A is false but R	A is false but R is true				
E	Both A and R a	re false				

6.	Assertion (A)	If $A = \begin{pmatrix} 3 & -2 & 10 \\ -2 & 4 & 5 \\ 10 & 5 & 6 \end{pmatrix}$ and $X = \begin{pmatrix} 1 & 5 & 6 \\ -2 & 0 & 1 \\ 4 & 3 & 2 \end{pmatrix} X'AX$ is symmetric matrix.
	Reason(R)	X'AX is symmetric or skew symmetric as A is symmetric or skew symmetric
Α	Both A and R ar	e true and R is the correct explanation of A
В	Both A and R ar	e true but R is NOT the correct explanation of A.
С	A is true but R is	s false
D	A is false but R	is true
E	Both A and R ar	re false

7. Assertion (A) If
$$A = \begin{pmatrix} -3 & 2 \\ -5 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -2 \\ 5 & -3 \end{pmatrix}$.then $A^{100}B = BA^{100}$.
Reason(R) If $AB = BA \Rightarrow A^nB = BA^n$ for all positive integers n
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.

C A is true but R is false

D A is false but R is true

E Both A and R are false

8. Assertion (A)
: If
$$A = \begin{pmatrix} 0 & -2 & 3 \\ 2 & 0 & 6 \\ -3 & -6 & 0 \end{pmatrix}$$
, then A^{-1} does not exist.
Reason(R)
: If A is a skew symmetric matrix of odd order, then A is singular
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false

9.	Assertion (A) If A is a square matrix such that $A^2 = I$, then $(I + A)^2 - 3A = I$.						
	Reason(R)	AI = IA = A, wehre I is Idetity matrix					
Α	Both A and R are true and R is the correct explanation of A						
В	Both A and R are true but R is NOT the correct explanation of A.						
С	A is true but R is false						
D	A is false but R is true						
Ε	Both A and R are false						

10. Assertion (A) (A + B)² ≠ A² + 2AB + B²
Reason(R) Generally AB=BA
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true

E Both A and R are false

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$. If X'AX = **0** for each X, then A Assertion (A) 12. must be skew symmetric matrix Reason(R) If A is symmetric matrix and $X'AX = \mathbf{0}$ for each X, then A=**O**. Both A and R are true and R is the correct explanation of A Α Both A and R are true but R is NOT the correct explanation of A. В A is true but R is false С A is false but R is true D Both A and R are false Ε Let $A_{\theta} = \begin{pmatrix} \cos\theta + \sin\theta & \sqrt{2}\sin\theta \\ -\sqrt{2}\sin\theta & \cos\theta - \sin\theta \end{pmatrix} \left(A_{\pi} - \frac{1}{2}\right)^3 = -I.$ Assertion (A) 13. : $A_{\theta} A_{\varphi} = A_{\theta+\varphi}$ Reason(R)

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

14.	Assertion (A)	If $A = \begin{pmatrix} 1 & \pi \\ 0 & 1 \end{pmatrix}$, then $A^{100} = \begin{pmatrix} 1 & 100\pi \\ 0 & 1 \end{pmatrix}$.				
	Reason(R)	If B is matrix of order 2X2 and $B^2 = 0$, then $(I + B)^n = I + nB$, for all $n \in N$				
Α	Both A and R are true and R is the correct explanation of A					
В	Both A and R are true but R is NOT the correct explanation of A.					
С	A is true but R is false					
D	A is false but R is true					
Ε	Both A and R ar	e false				

15.	Assertion (A)	Suppose $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfies $X^2 - 4X + 3I = 0$.: If $a + d \neq 4$,						
		then there are just two matrices such X.						
	Reason(R)	There are infinitely many matrices X satisfies the equation $X^2 - $						
		4X + 3I = 0						
Α	Both A and R are true and R is the correct explanation of A							
В	Both A and R are true but R is NOT the correct explanation of A.							
С	A is true but R is false							
D	A is false but R is true							
Е	Both A and R ar	e false						

CASE STUDY TYPE QUESTIONS

Two farmers Ravi and Ramu cultivate only three varieties of pulses namely Urad, Massor and Mung. The sale (in Rs.) of these varieties of pulses by both the farmers in the month of September and October are given by the following matrices A and B.

September sales (in Rs.):

CS- 1

September	sales (III RS.).				
		Urad Mas A = $\begin{pmatrix} 10000\\ 50000 \end{pmatrix}$	oor Mu 20000 30000	ing 30000) Ravi 10000) Ramu	
	October sal	les (in \Box):			
Urad	Masoor M	ung			
$A = \binom{5}{20}$	00010000000010000	6000) Ravi 10000) Ramu	l		
Using Algebra of	matrices, answ	er the following	questions.		
i. The co	mbined sales o	f Masoor in Sept	ember and	d October, for farn	ner Ramu is
(A)Rs.800	00	(B) Rs.90000		(C) Rs.40000	(D)
Rs.135	000				
ii. The co	mbined sales o	f Urad in Septem	ber and C	October, for farmer	Ravi is
(A)Rs.200	00	(B) Rs.30000		(C) Rs.36000	(D)
Rs.150	00				
iii. Find de	ecrease in sales	of Mung from S	eptember	to October, for the	e farmer Ravi.
(A)Rs.240	00	(B) Rs.10000	1	(C) Rs.30000	(D) No
Change	e				
iv. If both	the farmers rec	ceive 2% profit o	n gross sa	les, then compute	the profit for each
farmer	and for each v	ariety sold in Oct	tober	, <u>r</u> <u>r</u>	F
Tarmer		arrety sold in Oct	.0001		
(A)	Urad Mas $\begin{pmatrix} 100 & 200 \\ 400 & 300 \end{pmatrix}$	soor Mung 220 ₎ Ravi 200 ⁾ Ramu			

	$(B) \qquad \begin{array}{c} Urad & Masoor & Mung \\ (B) & \begin{pmatrix} 100 & 200 & 120 \\ 400 & 200 & 200 \end{pmatrix} Ravi \\ Ramu \\ Urad & Masoor & Mung \\ (C) & \begin{pmatrix} 150 & 200 & 220 \\ 400 & 200 & 280 \end{pmatrix} Ravi \\ Ramu \end{array}$										
	(D) Urad Masoor Mung $\begin{pmatrix} 100 & 200 & 120 \\ 250 & 200 & 220 \end{pmatrix}$ Ravi Ramu										
	v.	Wh	ich varie	ty of puls	ses has th	e highest	selling valu	ue in the m	onth of Se	ptember for	r the
	farmerH	Ram	u?								
		(A)	Urad	(B) M	asoor	(C) N	Aung	(D) A	All of these	have same	e price
CS- 2	While v	vork	ing with	excel, w	e need to	switch o	r rotate cell	ls. You car	n do this by	v <u>copying, p</u>	oastin <u>g,</u>
	and using	n <u>g</u> tl	ne Transp	ose optic	on. But de	oing that o	creates dup	licated dat	a. If you do	on't want th	at, you
	can typ	e a f	ormula ii	nstead usi	ing the T	RANSPO	SE function	n. For exa	mple, in the	e following	picture
	the form	nula	=TRAN	SPOSE(A1:B4) t	akes the c	ells A1 thr	ough B4 a	nd arrange	s them hori	zontally.
		Δ		- :	~	. f.	J-TDANK		D.4.\l		
		A	,			√ Jx	1-INANS	PUSE(AL	D4)}		
			A	В	С	D	E	F	G	Н	_
		1	Jan	100							_
		2	Feb Mar	200	< These a	are the orig	inal cells.				_
		4	Apr	300							
		5									
		6	Jan	Feb	Mar	Apr	These ce	lls use the T	RANSPOSE f	unction	
		7	100	200	150	300	1	is ase the f			
	i.		A square	matrix A	is expre	ssed as su	m of symn	netric and s	skew symn	netric matri	ces, and
		1	then sym	metric pa	rt of A 1s		1	_			
	(A)	$\frac{1}{2}(A$	$(+ A^{T})$		$(B)\frac{1}{2}(A)$	$-A^{T}$)	$(C)\frac{1}{2}(A)$	$A^{T} - A$)	(D) None	of them	
	ii.		A square	matrix A	is expre	ssed as su	m of symn	netric and s	skew symn	netric matri	ces, and
		1	then skev	v-symme	tric part o	of A is					
	(A)	$\frac{1}{2}(A$	$(+ A^{T})$		$(B)\frac{1}{2}(A$	$-A^{\mathrm{T}})$	$(C)\frac{1}{2}(A)$	$A^{T} - A$)	(D) None	of them	
	iii.		Symmetr	ic part of	$A = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$	$ \begin{array}{ccc} 2 & 5 \\ 2 & 1 \\ 5 & 7 \end{array} $					

$$\begin{array}{|c|c|c|c|c|} \hline \left(A\right) \begin{pmatrix} 1 & \frac{5}{2} & \frac{9}{2} \\ \frac{5}{2} & 2 & 3 \\ \frac{9}{2} & 3 & 7 \end{pmatrix} & (B) \begin{pmatrix} 1 & -\frac{5}{2} & -\frac{9}{2} \\ -\frac{5}{2} & 2 & 3 \\ -\frac{9}{2} & -3 & 7 \end{pmatrix} & (C) \begin{pmatrix} 0 & \frac{5}{2} & \frac{9}{2} \\ \frac{5}{2} & 0 & 3 \\ \frac{9}{2} & 3 & 0 \end{pmatrix} & (D) \begin{pmatrix} -\frac{5}{2} & -\frac{9}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{9}{2} & -3 & 0 \end{pmatrix} \\ \hline \text{iv.} & \text{Skew-Symmetric part of } A = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 2 & 1 \\ 4 & 5 & 7 \end{pmatrix} \\ (A) \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 2 & 0 \end{pmatrix} & (B) \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & -2 \\ \frac{1}{2} & 2 & 0 \end{pmatrix} & (C) \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -2 & 0 \end{pmatrix} & (D) \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 2 \\ \frac{1}{2} & -2 & 0 \end{pmatrix} \\ \hline \text{v.} & \text{When writing Square matrix A as sum of symmetric and skew-symmetric matrices, is symmetric and skew symmetric and skew symmetric matrices are unique? \\ \hline \text{(A) Yes} & (B) \text{ No} \\ \hline \hline \text{Cs-3} & \text{The monthly incomes of two brother Rakesh and Rajesh are in the ratio 3:4} \\ \text{and the monthly expenditures are in the ratio 5:7. Each brother saves $\Box 15,000 \\ \text{per month.} \\ \hline \hline \text{Read the above instruction and answer the following questions.} \\ \hline \text{(i) If monthly income of Rakesh and Rajesh are $\Box 3x$ and $\Box 4x$ and their expenditure are $\Box 5y$ and $\Box 7y$ respectively, then identify the system of linear equations for the above problem. \\ \hline (A)x - y = 15000; x + y = 15000 \\ \hline (B) 3x + 5y = 15000; x + 7y = 15000 \\ \hline (D) 5x - 3y = 15000; x - 4y = 15000 \\ \hline (D) 5x - 3y = 15000; x - 4y = 15000 \\ \hline (D) 5x - 3y = 15000; x - 4y = 15000 \\ \hline (B) BX = A, where A = \begin{pmatrix} 3 & -5 \\ 4 & -7 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, B = \begin{pmatrix} 15000 \\ 15000 \\ 15000 \end{pmatrix} \\ \hline (B) BX = A, where A = \begin{pmatrix} 3 & -5 \\ 4 & -7 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, B = \begin{pmatrix} 15000 \\ 15000 \\ 15000 \end{pmatrix} \\ \hline \end{array}$$$

		(C) AB = I, where A = $\begin{pmatrix} 3 & -5 \\ 4 & -7 \end{pmatrix}$, X = $\begin{pmatrix} X \\ y \end{pmatrix}$, B = $\begin{pmatrix} 15000 \\ 15000 \end{pmatrix}$
		(D) AB = X, where A = $\begin{pmatrix} 3 & -5 \\ 4 & -7 \end{pmatrix}$, X = $\begin{pmatrix} x \\ y \end{pmatrix}$, B = $\begin{pmatrix} 15000 \\ 15000 \end{pmatrix}$
	(iii)	If $AX = B$, where A, X, B matrices then X should be
		(A) $X = AB$ (B) $X = A^{-1}B$ (C) $X = AB^{-1}$ (D) $X = BA$
	(iv)	If $A = \begin{pmatrix} 3 & -5 \\ 4 & -7 \end{pmatrix}$, then A^{-1} is
		$(A)\begin{pmatrix} 7 & 5\\ 4 & 3 \end{pmatrix} \qquad (B)\begin{pmatrix} -7 & 5\\ -4 & 3 \end{pmatrix} \qquad (C)\begin{pmatrix} -7 & 5\\ 4 & -3 \end{pmatrix} \qquad (D)\begin{pmatrix} 7 & -5\\ 4 & -3 \end{pmatrix}$
	(v)	Monthly incomes of Rakesh and Rajesh respectively are
		(A) □ 90,000 each
		(B) (B) □90,000, □12,000
		(C) \Box 1,20,000 , \Box 90,000
		(D) None of these
<u>(S-4</u>	On the or	paggion of ahildron's day alogs tagebar of alogs
	XII Sh	Vinod Kumar, decided to distribute some
	chocolate	es to students of class XII. If there were 8
	students	less everyone would have got 10 chocolates
	more co	mpared to original number of chocolates
	received.	However, if there were 16 students more,
	everyone	would have got 10 chocolates less compared
	to origina	al number of chocolates received.
	Based on	the above information answer the following.
	(i)	If number of students in class be 'x' and Sh. Vinod Kumar has decided to distribute 'y'
		chocolates to each student, then identify the system of linear equations for the given
		problem.
		(A) $5x + 4y = 40$; $5x - 8y = 50$ (B) $x - y = 40$; $2x - 3y = 80$
		(C) $5x - 4y = 40$; $5x - 8y = -80$ (D) $8x + 10y = 40$; $16x - 10y = 80$
	(ii)	Identify the matrix equation for given problem.
		$(A)\begin{pmatrix} 5 & 4\\ 5 & -8 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 40\\ 50 \end{pmatrix} \qquad (B)\begin{pmatrix} 1 & -1\\ 2 & -3 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 40\\ -80 \end{pmatrix}$

	$(C) \begin{pmatrix} 5 & -4 \\ 5 & -8 \end{pmatrix}$	$\binom{x}{y} = \binom{40}{-80}$	$D (D) \begin{pmatrix} 8 \\ 16 \end{pmatrix} -$	
(iii)	If $A = \begin{pmatrix} 5\\5 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -8 \end{pmatrix}$, then A ⁻¹	¹ is	
	$(A)\frac{1}{20}\binom{-8}{-5}$	4 5)	$(B)\begin{pmatrix} -8 & 4\\ -5 & 5 \end{pmatrix}$	
	$(C)\frac{-1}{20}\binom{-8}{-5}$	$\binom{4}{5}$	(D) $-\frac{1}{5} \begin{pmatrix} -8\\-5 \end{pmatrix}$	$\binom{4}{5}$
(iv)	The number	r of students in	Class XII	
	(A)32	(B) 30	(C) 34	(D) 28
(v)	Then the nu	mber chocolate	es distributed per	student is
	(A)34	(B) 30	(C) 32	(D) 36

Assertion and Reasoning Answers:

1.D	2. A		3.A		4.C		5.A		6.A	7.A	8.A
9.D	10.C		11.A		12.B		13.A		14.A	15.B	
		•									
Case S	Study 1 i.	С	ii	.D		iii.A		iv.	В	v.A	
Case S	Study 2 i.	A	ii	.В		iii.A		iv.	А	v.Yes	
Case S	Study 3 .i.A		ii	.A		iii.B		iv.	D	v.D	
Case S	Study 4 i	С	ii	.C		iii.C		iv.	А	v.B	
Hnt:-											

15. Suppose $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfies $X^2 - 4X + 3I = 0$.: If $a + d \neq 4$, then there are just two matrices such X.

 $X^{2} - 4X + 3I = \mathbf{0}.; (A-3I)(A-I) = 0i.e, \quad \begin{pmatrix} a-3 & b \\ c & d-3 \end{pmatrix} \begin{pmatrix} a-1 & b \\ c & d-1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{If} \ \mathbf{a} + \mathbf{d} \neq \mathbf{0}, \text{ then } b = 0, c = 0$ Then $\mathbf{a} = 1, 3$ and $\mathbf{d} = 1, 3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } X = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \text{ only two}$

If a + d = 0, teo equations in three variables will be obtained.

DETERMINEMTS

Multiple choice questions -

1). If for matrix A, $ A = 3$, where matrix A is of order 2 × 2, then 5 A is									
a) 9	b) 75	c) 15	d) 2						
2). If the points A	2). If the points A (3, -2), B(k,2) and C (8,8) are collinear, then the value of k is:								
a) 2	b) -3	c) 5	d) -4						
3). Find the area	3). Find the area of the triangle whose vertices are $(3, 8)$, $(-4, 2)$ and $(5, 2)$								
a) 18	b) 34	c) 27	d) 61						
4). The value of	4). The value of $\begin{vmatrix} \cos 15^0 & \sin 15^0 \\ \sin 15^0 & \cos 15^0 \end{vmatrix}$ is:								
a) 1	b) $\frac{1}{2}$	c) $\frac{\sqrt{3}}{2}$	d) 0						
5). If A is a squa	5). If A is a square matrix such that $A^2 = I$, then A^{-1} is equal to:								
a) 2A	b) O	c) A	d) A+I						
6). If area of triangle is 35 sq units with vertices $(2, -6)$, $(5, 4)$ and $(k, 4)$. Then k is:									
a) 12	b) -2	c) -12, -2	d) 12, -2						

7).	7). A square matrix A is said to be singular if IAI =							
	a) 1	b) -1	c) 0	d) None of these				
8).	If $\Delta \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$	=	and Aij is Cofactor	s of aij, then value of Δ is given by:				
	a) a11 A31+ a12 A32	+ a13 A33	c) a11 A11+ a12 A21	+ a13 A31				
	b) a21 A11+ a22 A12	+ a23 A13	d) a11 A11+ a21 A2	1 + a31 A31				
9.	$\begin{bmatrix} x & 2 \end{bmatrix} \begin{bmatrix} 6 & 2 \end{bmatrix}$	1						
	$\begin{bmatrix} 18 & x \end{bmatrix}^{=} \begin{bmatrix} 18 & 6 \end{bmatrix}$	then x is equ	ial to:					
10	a) 6	b) ±6	c) -1	d) -6				
10.	Given that A is a squa	are matrix of order	3 and $ A = -4$, then $ adj $	A is equal to:				
	a) 4	b) -4	c) 16	d) -16				
11.	Given that A = a) $1 + \alpha^2 + \beta \gamma = 0$ c) $3 - \alpha^2 - \beta \gamma = 0$	$\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} \text{ and } A$ b) 1 - d) 3 +	$\alpha^{2} = 3I$, then: $\alpha^{2} - \beta\gamma = 0$ $\alpha^{2} + \beta\gamma = 0$					
12.	Find the minor of the	element 7 in the de	terminant $\Delta =$	$= \begin{vmatrix} 1 & 4 & 3 \\ 5 & 6 & 7 \\ 0 & 0 & 0 \end{vmatrix}$				

	a)23	b) -23	c) 24	0 9 2 d) 0	
13.	If A, B and C are	angles of a triangle, the	n the determinant	$\begin{bmatrix} -1 & cosC & cosB \\ cosC & -1 & cosA \\ cosB & cosA & -1 \end{bmatrix}$	
	a) 0	b) -1	c) 1	d) 2	
14.	Find the minor of	the element of second	row and third column in	the following det $\begin{bmatrix} 2 & -3 \\ 6 & 0 \\ 1 & 5 \end{bmatrix}$	$\begin{bmatrix} 5\\4\\-7\end{bmatrix}$
	a) 13	b) 4	c) 5	d) 0	

15.	If $A(3,4)$, $B(-7,2)$ and $C(x,y)$ are collinear, then:
	a) $x+5y+17=0$ b) $x+5y+13=0$ c) $x-5y+17=0$ d) none of these
16.	$A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix} \text{then } (A+B)^{-1}$
	(a) $\begin{bmatrix} -1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix}$ (b) does not exist (c) is a skew-symmetric (d) none of these
17.	If the points (a_1, b_1) , (a_2, b_2) and $(a_1 + a_2, b_1 + b_2)$ are collinear, then
	a) $a_1b_2 = a_2b_1$ b) $a_1 + a_2 = b_1 + b_2$ c) $a_2b_2 = a_1b_1$ d) $a_1 + b_1 = a_2 + b_2$
18.	18). Compute $(AB)^{-1}$ $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -1 \\ 1 & 0 & 2 \end{bmatrix}$ if:
	(a) $\frac{1}{19}\begin{bmatrix} 16 & 12 & 1\\ 21 & 11 & -7\\ 10 & -2 & 3 \end{bmatrix}$ (b) $\frac{1}{19}\begin{bmatrix} 16 & 12 & 10\\ 21 & 11 & -2\\ 1 & -7 & 3 \end{bmatrix}$
	(c) $\frac{1}{19}\begin{bmatrix} 16 & 12 & 1\\ -21 & -11 & 7\\ 10 & -2 & 3 \end{bmatrix}$ (d) $\frac{1}{19}\begin{bmatrix} 16 & -21 & 1\\ 21 & 11 & 7\\ 10 & -2 & 3 \end{bmatrix}$
19.	The area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq. units. then k= a) 9 b) 3 c) -9 d) 6
20.	Find the adjoint of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
	(a) $\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
	(c) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$
21.	Let A be a non-singular square matrix of order 3×3 . Then $ adj A $ is equal to: a) $ A $ b) $ A ^2$ c) $ A ^3$ d) $3 A $
22.	If A is an invertible matrix of order 2, then det (A ⁻¹) is equal to
	(A) det (A) (B) $\frac{1}{\det(A)}$ (C) 1 (D) 0
23.	If A is a square matrix of order 4 such that $ adj A = 125$, then $ A $ is

24.	Which of the following is a	correct statement?		
	a) Determinant is a square matrix			
	b) Determinant is a number	associated to a matrix		
	c) Determinant is a number	associated with the order of	the matrix	
	d) Determinant is a number	associated to a square matrix	X	
25.	If A = $\begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA =$	$\begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values	s of k, a and b respective	ly
	are:			
	a) -6, -12, -18	b) -6, -4, -9	c) -6, 4, 9	d) -6, 12, 1

Aswers

1.B	2.C	3.C	4.C	5.C	6.D	7.C	8.D	9.A	10.C
11.C	12.B	13.A	14.A	15.C	16.A	17.A	18.A	19.B	20.B
21.B	22.B	23.B	24.D	25.B					

ASSERTION AND REASONING TYPE QUESTIONS

1.	Assertion (A)	The value of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ is $\pm 2\sqrt{2}$	
	Reason(R)	The determinant of a matrix A order 2x2, A= $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $= ad - bc$	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R	is true	
Ε	Both A and R ar	e false	

-			
3.	Assertion (A)	$f A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} $ then $ 3A = 9 A $ f A is a square matrix of order n then $ kA = k^n A $	
Α	Both A and R are tru	ue and R is the correct explanation of A	
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
Ε	Both A and R are false		
4.	Assertion (A)	If A is a non singular square matrix of order $3x3$ and $ A = 5$	

then |adjA| is equal to 125

Reason(R) $|adjA| = (|A|)^{n-1}$ where n is order of A.

A Both A and R are true and R is the correct explanation of A

- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

6.	Assertion (A)	Value of x for which the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ -1 & 2 & x \end{bmatrix}$ is singular is 5	
	Reason(R)	A square matrix is singular if $ A = 0$	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
Ε	Both A and R ar	re false	

obtained by deleting its $j^{th} \mbox{ row } \mbox{ and } i^{th} \mbox{ column}$

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

8.	Assertion (A)	For two matrices A and B of order 3, $ A =2 B = -3$ then if $ 2AB $ is -48.	
	Reason(R)	For a square matrix A, $A(adj A)=(adj A)A= A $	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
Ε	Both A and R are	false	

9.	Assertion (A)	Values of k for which area of the triangle with vertices $(2, -6)$, $(5,4)$ and $(k,4)$ is 35 sq units are 12, 2.
	Reason(R)	Area of a triangle with vertices A (x ₁ , y ₁),B (x ₂ , y ₂) and C (x3, y3) is $\frac{1}{2}\begin{vmatrix}x1 & y1 & 1\\x2 & y2 & 1\\x3 & y3 & 1\end{vmatrix}$
Α	Both A and R are	true and R is the correct explanation of A
В	Both A and R are	true but R is NOT the correct explanation of A.
С	A is true but R is false	
D	A is false but R is	true
Е	Both A and R are	false

10.	Assertion (A)	The points A(a, b+c), B(b, c+a) and C(c, a+b) are collinear.
	Reason(R)	Three points A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) are collinear if area of a triangle ABC is zero.
Α	Both A and R ar	e true and R is the correct explanation of A

- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

11.	Assertion (A) Inverse of the matrix $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ is the matrix $\begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$		
	Reason(R) : Inverse of a square matrix A, if it exits is given by $A^{-1} = \frac{1}{IAI}$ adjA		
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
E	Both A and R are false		
12.	Assertion (A) For a matrix $A = \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix}$, A. adj $A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$		
	Reason(R) For a square matrix A , $A(adj A) = (adj A)A = A A $		
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is true		
E	Both A and R are false		

13.	Assertion (A)	In a square matrix of order 3 the minor of an element a_{22} is 6 then cofactor of a_{22} is -6.	
	Reason(R)	Cofactor an element $a_{ij} = A_{IJ} = (-1)^{i+j}M_{ij}$	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is	false	

- D A is false but R is true
- E Both A and R are false

14. Assertion (A)Inverse of a matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ is the matrix $A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ **Reason(R)**: Inverse of a square matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.**A**Both A and R are true and R is the correct explanation of A**B**Both A and R are true but R is NOT the correct explanation of A.**C**A is true but R is false**D**A is false but R is true**E**Both A and R are false

15.	Assertion (A)	If A is an invertible matrix of order 2, and det A= 3 then det(A ⁻¹)is equal to $\frac{1}{3}$	
	Reason(R)	If A is an invertible matrix of order 2 then det $(A^{-1}) = \det A$	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R is	A is false but R is true	
Ε	Both A and R are	false	

16.	Assertion (A) The equation of the line joining $(1,2)$ and $(3,6)$ using determinants is $y=3x$.			
	Reason(R)	The area of ΔPAB is zero if P(x, y) is a point on the line joining a A and B.		
Α	Both A and R are	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R is	A is false but R is true		
Ε	Both A and R are	false		

CASE STUDY TYPE QUESTIONS

CS- 1

Three shopkeepers Ujjwal, Lohith, and Kundan are using polythene bags, handmade bags and newspaper's envelope as carry bags. It is found that the shopkeepers Ujjwal, Lohith, and Kundan are using (20, 30, 40), (30, 40, 20), and (40, 20, 30) polythene bags, handmade bags, and newspapers envelopes respectively. They spent \Box 250, \Box 270, and \Box 200 on these carry bags respectively. Let the cost of polythene bag, handmade bag and newspaper envelope costs are x,y and z respectively.

i. What is the Linear equation representing amount spent by Lohith on carry bags?

a. 20x + 30 y + 40 z = 250 b. 30x + 40 y + 20 z = 270 c. 40x + 20 y + 30 z = 270 d. 250x + 270 y + 200 z = 0

ii. What is the correct representation of the above problem in matrix form?

Г20 30 [250] **[40** 401 r*x*1 20 20 *y* 270 b. 30 40 a. 30 40 20 |y| =20 30 L40 20 $30 \lfloor L_Z \rfloor$ [500] **F30** 40 201 ry [270] |x| = |250|d. All the above. c. 20 30 40 $30|l_z|$ 20 200 L40 3 iii. Adjoint of 3 4 2 -1000-1000018000 $\begin{bmatrix} 8 & -1 & -10 \\ -1 & -10 & 8 \end{bmatrix}$ b. -1000-100008000 a. -100008000 -1000 J d. $\begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 3 \\ 3 & 2 & 4 \end{bmatrix}$ 30 40 20 30 40 20 C. L40 20 30

iv. What is the cost of one newspaper bag?

a. 🗆 1 b. 🗆 2 c. 🗆 3 d. 🗆 5

v. Find the total amount spent by ujjwal for handmade bags ?

a. 100 b. 200 c. 150d. 250

CS- 2

Each triangular face of the square pyramid of Peace in Kazakhstan is made up of 25 smaller equilateral triangles as shown in the figure.

Using the above information and concept of determinants, answer the following questions.

i. If the vertices of one of the smaller equilateral triangles are (0, 0), (3, $\sqrt{3}$) and (3, - $\sqrt{3}$), then the area of such triangle is

a. $\sqrt{3}$ sq. units b. $2\sqrt{3}$ sq. units c. $3\sqrt{3}$ sq. units d. none of these ii. The lateral surface area of the Pyramid is a. $300\sqrt{3}$ sq. unit b. 75 sq. unit c. $75\sqrt{3}$ sq. unit d. 300 sq. unit iii. The length of each altitude of a smaller equilateral triangle is a. 2 units b. 3 units c. $2\sqrt{3}$ units d. 4 units iv. If (2, 4), (2, 6) are two vertices of a smaller equilateral triangle, then the third vertex is

a. $(2 \pm \sqrt{3}, 5)$ b. $(2 \pm \sqrt{3}, \pm 5)$ c. $(2 \pm \sqrt{5}, 3)$ d. $(2 \pm \sqrt{5}, \pm 3)$ v. Let A (a, 0), B (0, b) and C (1, 1) be three points. If $\frac{1}{a} + \frac{1}{b} = 1$, then the three points are

a. vertices of an equilateral triangleb. vertices of a right-angled trianglec. collineard. vertices of an isosceles triangle

CS- 3

Area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by the determinant

 $\Delta = 1/2 \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$

Since, area is a positive quantity, so we always take the absolute value of the determinant A. Also, the area of the triangle formed by three collinear points is zero. Based on the above information, answer the following questions.

- i. Find the area of the triangle whose vertices are (-2, 6), (3, -6), and (1, 5).
- ii. 30 sq. units b. 35 sq. units c. 40 sq. units d. 15.5 sq. units If the points (2, -3), (k, -1) and (0, 4) are collinear, then find the value of 4k.

a. 4 b. $\frac{7}{140}$ c. 47 d. $\frac{40}{7}$

iii. If the area of a triangle ABC, with vertices A (1, 3), B (0, 0) and C (k, 0) is 3 sq. units, then a value of k is
a. 2
b. 3
c. 4
d. 5

iv . Using determinants, find the equation of the line joining the points A(1,2) & B(3,6).

a. y = 2x b. x = 3y c. y = x d. 4x - y = 5

V. If A is (11, 7), B is(5, 5) and C is (-1, 3), then

- a) $\triangle ABC$ is scalene triangle c. $\triangle ABC$ is equilateral triangle
- b) A, B and C are collinear d. None of these

Answers

ASSERTION AND REASONING 1 2 D 4 D 5 Ε Α С 3 7 6 Ε 8 В 9 D 10 Α D С 11 Α 12 13 D 15 С D 14 С 16 D 17 В 18 19 D 20 В CASE STUDY **CS-1** I)b II) d III) b iv) b V) c CS-2 I)c ll) a III) b iv) a V) c CS-3 I)d ll) d III) a iv) a V) b

Multiple choice questions -

1	A function $f(x)$ is continuous at x=a (a \in D	omain of f), if		
	(a) $f(a) = \lim_{x \to a^+} f(x)$	(b) $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$		
	(c) $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$	(d) $\lim_{x \to a^{-}} f(x) = f(a)$		
2	If $f(x) = x + x - 2 $, then			
	(a) f(x) is continuous at x=0 but not at x=2	(b) f(x) is continuous at x=0 and at x=2		
	(c) f(x) is continuous at x=2 but not at x=0	(d)None of these		
3	Suppose f(x) is defined on [a,b]. Then the	continuity of f(x) at x=a means		
	(a) $\lim_{x \to a^+} f(x) = f(a)$	(b) $\lim_{x \to a^{-}} f(x) = f(a)$		
	(c) $\lim_{x \to a^+} f(x) = f(b)$	(d) $\lim_{x \to a^{-}} f(x) = f(b)$		
4	Suppose f(x) is defined on [a,b]. Then the	continuity of $f(x)$ at $x = b$ means		
	$(a)\lim_{x \to b^+} f(x) = f(a)$	$(b)\lim_{x\to b^-} f(x) = f(a)$		
	$(c) \lim_{x \to b^+} f(x) = f(b)$	$(d)\lim_{x\to b^-} f(x) = f(b)$		
5	If the function $f(x) = \frac{x(e^{sinx} - 1)}{(1 - cosx)}$ is continuous at x = 0, then f(0) is			
	a) 1	b) 0		
	C) 2	d) 1/2		
6	Let $f(x) = x x $, then f'(0) is equal to			
	(a)1	(b) -1		
	(c) 0	(d) None of these		

7	The function f(x) = $\begin{cases} \frac{\sin 3x}{x}, & x \neq 0\\ \frac{k}{2}, & x = 0 \end{cases}$ is continuous at x=0, then k=		
	a) 3	(b) 6	
	(c)9	(d) 12	
8	The function $f(x) = \cot x$ is discontinuous of	on the set	
	(a) {x: x= nл, nє Z}	(b) {x: x= 2nл, nє Z}	
	(c) {x: x= nл/2, nє Z}	(d) {x: x= (2n+1)л, nє Z}	
9	The function $f(x) = x - [x]$, where [.] denote	tes the greatest integer function is	
	(a) Continuous everywhere.	(b) Continuous at integer points only.	
	(c) Continuous at non-integer points only	(d) Differentiable everywhere	
10	If $f(x) = -\sqrt{25 - x^2}$, then $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ is equal to		
	(a) 1/24	(b)1/5	
	(c) $-\sqrt{24}$	$(d)\frac{1}{\sqrt{24}}$	
11	If $f(x) = \begin{cases} x^2 + 3x + a, x \le 1 \\ bx + 2, x > 1 \end{cases}$ is everywhere differentiable, then the values of a and b		
	(a) a=3 & b=5	(b) a=0 & b=5	
	(c) a=0 & b=3	(d) a=3 & b=3	
	If $f(x) = \cos x - \sin x $, then $f'(\pi/3)$ is equal to		
12	(a) $\frac{(\sqrt{3}+1)}{2}$	(b) $\frac{\sqrt{3}}{2}$	
	$(C)\frac{(\sqrt{3}-1)}{2}$	(d) None of these	
13	If $x - y = \pi$, then $\frac{dy}{dx} =$		
	a) 0	b) 1	
	c) -1	d) 2	

14	If $y = \sin(x^2)$, then $\frac{dy}{dx} =$		
	a) 2x cosx ²	b) 2x cosx	
	c) 2x sinx ²	d) 2x sinx	
15	If $2x + 3y = \sin x$, then $\frac{dy}{dx} =$	·	
	a) $\frac{sinx-3}{2}$	b). $\frac{sinx-2}{3}$	
	c) $\frac{\cos x - 3}{2}$	d) $\frac{\cos x - 2}{3}$	
16	If $y = A \sin x + B \cos x$, then $\frac{d^2y}{dx^2} + y =$		
	a)1	b) 2	
	c) 0	d) 2	
17	If $y = e^{x^3}$, then $\frac{dy}{dx} =$		
	a. $3x^2e^{x^3}$	b. $x^2 e^{x^3}$	
	c $3e^{x^3}$	d. e^{x^3}	
18	If $y = \log(\log x)$, $x > 1$, then $\frac{dy}{dx} =$		
	a. $\frac{x}{x \log x}$	b. $\frac{\log x}{x}$	
	C. $\frac{x}{\log x}$	d. $\frac{1}{x \log x}$	
19	If $x = 4t$ and $y = \frac{4}{t}$, then $\frac{dy}{dx} =$	1	
	a. $\frac{1}{t^2}$	b. $\frac{-1}{t^2}$	
20	C. $\frac{1}{t^2}$	d. $\frac{1}{t^2}$	
20	If $x = \sqrt{a^{\sin^{-1}t}}$ and $y = \sqrt{a^{\cos^{-1}t}}$, then	$\int \frac{dy}{dx} =$	
	a. $\frac{y}{x^2}$	b. $\frac{-y}{x}$	
	C. $\frac{x}{t^2}$	d. $\frac{-y}{t^2}$	
21	$y = \sin^{-1} \frac{2x}{1+x^2}$, then $\frac{dy}{dx} =$		
	a. $\frac{2}{1+x^2}$	$b.\frac{-2}{1+x^2}$	
	C. $\frac{2}{1-x^2}$	d. $\frac{-2}{1-x^2}$	

22	If $e^{x}(x + 1) = 1$, then which of the following is true:		
	a. $\frac{d^2 y}{dx^2} = \left(\frac{dy}{dx}\right)^2$	$b \cdot \frac{d^2 y}{dx^2} = \frac{dy}{dx}$	
	$C.(\frac{d^2 y}{dx^2})^2 = (\frac{dy}{dx})^2$	d. $\frac{d^2 y}{dx^2} = \frac{dy}{dx}$	
23	$y = \cos^{-1}(\sin x)$, then $\frac{dy}{dx} =$		
	a.0	b. 1	
	c1	d.2	
24	The derivative of $\tan^{-1}(\frac{\sin x}{1+\cos x})$ with res	spect to x is	
	a. $\frac{1}{2}$	b. $\frac{x}{2}$	
	C. $\frac{-1}{2}$	d. $\frac{-x}{2}$	
25	If $x = a(cost + t sint)$ and $y = a (sint - t cost)$	st), (if $0 < t < \frac{\pi}{2}$), then $\frac{d^2 y}{dx^2} =$	
	a. $\frac{\sec^2 t}{t}$	b $\frac{\sec^3 t}{t}$	
	C. $\frac{\sec^2 t}{at}$	d. $\frac{\sec^3 t}{at}$	
26	If Rolle's theorem holds true for the funct ovits c in (-4.2) such that $f'(c) = 0$, then the	ion $f(x) = x^2 + 2x - 8$ in [-4,2], then there	
	exits c in (-4,2) such that i (c) = 0 then the		
	a.0	b. 1	
	c1	d.2	
27	If Lagrange's mean value theorem holds t	true for the function $f(x) = x^2 - 4x - 3$ in [1,4],	
	then there exits \mathbf{c} in (1,4) such that f'(c) =	$rac{f(b)-f(a)}{b-a}$, then the value of c is	
	a . ³ / ₂	b. 1	
	$c.\frac{5}{2}$	d.2	
Ans	wers for MCQ's		

1	С	2	b	3	а	4	d	5	С
6	С	7	b	8	а	9	С	10	d
11	а	12	а	13	b	14	а	15	d
16	С	17	а	18	d	19	b	20	b
21	а	22	а	23	С	24	а	25	d
26	С	27	С						

ASSERTION AND REASONING TYPE QUESTIONS

1.	Assertion (A)	(A) The value of the constant 'k' so that $f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases}$		
		continuous at $x = 2$ is $k = 4/3$.		
	Reason(R)	A function $f(x)$ is continuous at a point $x=a$ of its domain if $\lim_{x\to a} f(x) = f(a)$		
Α	Both A and R ar	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R	is true		
E	Both A and R ar	e false		

2.	Assertion (A)	The function f(x) = $\begin{cases} 12x - 13, & \text{if } x \le 3\\ 2x^2 + 5, & \text{if } x > 3 \end{cases}$ is differentiable at x= 3.		
	Reason(R)	The function $f(x)$ is differentiable at $x = c$ of its domain if Left hand derivative of f at c= Right hand derivative of f at c.		
Α	Both A and R ar	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.			
С	A is true but R is false			
D	A is false but R	is true		
Ε	Both A and R ar	re false		

Assertion (A) f(x) = |x - 1| + |x - 2| is continuous but not differentiable at x = 1, 2. 3. Reason(R) Every differentiable function is continuous Both A and R are true and R is the correct explanation of A Α Both A and R are true but R is NOT the correct explanation of A. В A is true but R is false С A is false but R is true D Both A and R are false Ε If $f(x) = |\cos x|$, then $f'\left(\frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}}$ and $f'\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}$ Assertion (A) 4. $f(x) = |\cos x| = \begin{cases} \cos x, if \ 0 \le x \le \pi/2 \\ -\cos x, if \ \pi/2 < x \le \pi \end{cases}$ Reason(R)

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- D A is false but R is true
- E Both A and R are false

5. Assertion (A)
$$\frac{d}{dx}(x^2 + x + 1)^4 = 4(x^2 + x + 1)^3(2x + 1)$$

Reason(R)

- (fog)' = f'[g(x)].g'(x)
- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- c A is true but R is false
- **D** A is false but R is true
- E Both A and R are false

6. Assertion (A) If
$$y = \tan 5x^0$$
, then $\frac{dy}{dx} = \frac{5\pi}{180}sec^2(5x^0)$
Reason(R) $\pi^c = 90^0$
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false

7. Assertion (A) If
$$y = tan^{-1}\left(\frac{cosx+sinx}{sinx-cosx}\right)$$
, $\frac{-\pi}{4} < x < \frac{\pi}{4}$, then $\frac{dy}{dx} = -1$
Reason(R) $\frac{cosx+sinx}{sinx-cosx} = tan\left(x+\frac{\pi}{4}\right)$
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false

8. Assertion (A) If $x^2 + 2xy + y^3 = 42$, then $\frac{dy}{dx} = \frac{2(x+y)}{(2x+3y^2)}$ Reason(R) $\frac{dy^n}{dx} = ny^{(n-1)}$ A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation of A. C A is true but R is false D A is false but R is true E Both A and R are false

Assertion (A) If $y = log_7(x^2 + 7x + 4)$, then $\frac{dy}{dx} = \frac{(2x+7)}{(x^2+7x+4)}$, 9. Reason(R) $log_b a = \frac{log_e a}{log_e b}$ Both A and R are true and R is the correct explanation of A Α Both A and R are true but R is NOT the correct explanation of A. В A is true but R is false С A is false but R is true D Both A and R are false Ε If $x = at^2$ and y = 2at where 't' is the parameter and 'a' is a Assertion (A) 10. constant, then $\frac{d^2y}{dx^2} = \frac{-1}{t^2}$. Reason(R) $\frac{d^2y}{dx^2} = \frac{d^2y}{dt^2} \div \frac{d^2x}{dt^2}$ Both A and R are true and R is the correct explanation of A Α Both A and R are true but R is NOT the correct explanation of A. B A is true but R is false С A is false but R is true D Both A and R are false Ε

11. Assertion (A) $\frac{dx^{sinx}}{dx} = x^{sinx}[(cosx)logx + \frac{sinx}{x}]$ Reason(R) $if y = x^{f(x)} then \frac{dy}{dx} = x^{f(x)}[f'(x)logx + \frac{f(x)}{x}]$ ABoth A and R are true and R is the correct explanation of ABBoth A and R are true but R is NOT the correct explanation of A.CA is true but R is falseDA is false but R is trueEBoth A and R are false

12.	Assertion (A)	f(x)=[x] greatest integer function is not differentiable at x=2	
	Reason(R)	The greatest integer function is not continuous at any integer	
Α	Both A and R ar	e true and R is the correct explanation of A	
В	Both A and R ar	e true but R is NOT the correct explanation of A.	
С	A is true but R is	s false	
D	A is false but R	is true	
Е	Both A and R ar	e false	
13.	Assertion (A)	The derivative of log sinx w.r.t. \sqrt{cosx} is $2\sqrt{cosx} cotx cosecx$	
	Reason(R)	The derivative of u w.r.t. v is $\frac{\frac{du}{dx}}{\frac{dv}{dx}}$	
Α	Both A and R are true and R is the correct explanation of A		
В	Both A and R are true but R is NOT the correct explanation of A.		
С	A is true but R is false		
D	A is false but R	is true	
E	Both A and R are false		

14. Assertion (A) If $f(x) = \begin{vmatrix} x + a^2 & ab \\ ab & x + b^2 \end{vmatrix}$ then $f'(x) = 2x + a^2 + b^2$ Reason(R) If $\Delta = \begin{vmatrix} f(x) & g(x) \\ u(x) & v(x) \end{vmatrix}$, Then $\frac{d\Delta}{dx} = \begin{vmatrix} f'(x) & g'(x) \\ u(x) & v(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) \\ u'(x) & v'(x) \end{vmatrix}$ A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation of A. C A is true but R is false D A is false but R is true E Both A and R are false

15. Assertion (A)
if
$$y = sin^{-1} \frac{2x}{1+x^2}$$
 then $\frac{dy}{dx} = \frac{2}{1+x^2}$
Reason(R)
 $sin 2\theta = \frac{2tan\theta}{1+tan^2\theta}$
A Both A and R are true and R is the correct explanation of A
B Both A and R are true but R is NOT the correct explanation of A.
C A is true but R is false
D A is false but R is true
E Both A and R are false

CASE STUDY TYPE QUESTIONS

CASE STUDY

CS 1	Let f(x) be a real valued function, then its	Let f(x) be a real valued function, then its		
	Left Hand Derivative (L.H.D) at the point a is f'(a	a-) = $\lim_{x\to 0} \frac{f(a-h) - f(a)}{-h}$ and		
	Right Hand Derivative (R.H.D) at the point a is $f'(a+) = \lim_{x\to 0} \frac{f(a+h) - f(a)}{h}$, also a			
	function $f(x)$ is said to be differentiable at $x = a$ and	d if its L.H.D and R.H.D at x = a		
	exist and are equal. For the function $f(x) = \begin{cases} x-3 \\ \frac{x^2}{4} - \frac{3x}{2} \end{cases}$, $x ≥ 1$ + $\frac{13}{4}$, $x < 1$		
	Answer the following questions:			
1	L.H.D of $f(x)$ at $x = 1$ is			
	(a) 1 (b).	-1		
	(c) 0 (d)	2		
2	f(x) is non differentiable at			
	(a) x = 1 (b)	x = 2		
	(c) x = 3 (d)	x = 4		
3	Find the value of f'(2)			
	(a) 1 (b)	2		
	(c) 3 (d)	-1		
4	Find the value of f'(-1)			
	(a) $x = 1$ (b)	x = 2		
	(c) $x = -2$ (d)	x = -1		
5	R.H.D of $f(x)$ at $x = 1$ is	4		
	(a) 1 (b)	-1		
	(c) 0 (d)	2		
CS 2	A function f(x) is said to be continuous in an open i	nterval (a,b) , if it is continuous at		
	A function $f(x)$ is said to be continuous in an closed	l interval [a,b] , if f(x) is continuous		
	in (a,b) and			

	$\lim_{h\to 0} f(a+h) = f(a)$ and $\lim_{h\to 0} f(b+h) = f(a)$	(-h) = f(b).
	If function $f(x) = \int_{C}^{\frac{\sin(a+1)x+\sin x}{x}} x < 0$	
	$\left(\frac{\sqrt{x+bx^2}-\sqrt{x}}{bx^{\frac{3}{2}}}, x > 0\right)$	
	Is continuous at x = 0 , then answer the	following questions:
1	The value of a is :	
	(a) -3/2	(b) 1/2
	(c) 0	(d) -1/2
2	The value of b is :	
	(a) 1	(b) -1
	(c) 0	(d) Any real number except 0
3	The value of c is :	
	(a) 1	(b) 1/2
	(c) -1	(d) -1/2
4	The value of c - a is :	
	(a) 1	(b) -1
	(c) 0	(d) 2
5	The value of a +c is :	
	(a) 1	(b) -1
	(c) 0	(d) 2
CS 3	Let $x = f(t)$ and $y = g(t)$ be the parametric	c forms with t as a parameter, then
	$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{g'(t)}{f'(t)} \text{ where } f'(t) \neq 0.$	
	On the basis of the above information	answer the following questions:
1	The derivative of f (tanx) w.r.t g (secx)) at $x = \frac{\pi}{4}$, where f (1) = 2 and g ($\sqrt{2}$) = 4
	is :	

	(a) $\frac{1}{\sqrt{2}}$	(b) $\sqrt{2}$						
	(c) 0	(d) 1						
2	The derivative of $\sin^{-1}(\frac{2x}{1+x^2})$ w.r.t $\cos^{-1}(\frac{1-x^2}{1+x^2})$ is :							
	(a) 1	(b) -1						
	(c) 2	(d) 4						
3	The derivative of e^{x^3} w.r.t logx is :	· ·						
	(a) e^{x^2}	(b) $3x^2 \cdot 2 \cdot e^{x^3}$						
	(c) $3x^3 \cdot e^{x^3}$	(d) $3x^2e^{x^2} + 3x$						
4	The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t $\cos^{-1} x$ is :							
	(a) 2	(b) $\frac{-1}{2\sqrt{1-x^2}}$						
	(c) $\frac{2}{x}$	(d) 1 - x ²						
5	If $y = \frac{1}{4}u^4$ and $u = \frac{2}{3}x^3$, then $\frac{dy}{dx} = :$							
	(a) $\frac{2}{27}x^9$	(b) $\frac{16}{27} x^{11}$						
	(c) $\frac{8}{27}x^9$	(d) $\frac{2}{27}x^{11}$						
CS 4	A function $f(x)$ will be discontinuous at $\mathbf{x} = \mathbf{a}$ if $f(x)$ has							
	1.Discontinuity of first kind:							
	$\lim_{h o 0} f(a-h)$ and $\lim_{h o 0} f(a+h)$,	both exist, but are not equal.						
	It is also known as irremovable discontinuity.							
	2.Discontinuity of second kind:							
	If none of the limits $\lim_{h\to 0} f(a-h)$ and $\lim_{h\to 0} f(a+h)$ exist.							
	3.Discontinuity of third kind:							
	<u>Removable discontinuity</u> – If $\lim_{h\to 0} f(a-h)$ and $\lim_{h\to 0} f(a+h)$ both exist and are equal, but not equal to f(a).							
	Based on the above information answer the following questions:							

1	If f(x) = $\begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ 4, & x = 3 \end{cases}$		
	Then at x = 3		
	(a) f has removable discontinuity	(b)	f is continuous
	(c) f has irremovable discontinuity	(d)	None of these
2	Let $f(x) = \begin{cases} x + 2, & \text{if } x \le 4 \\ x + 4, & \text{if } x > 4 \end{cases}$		
	Then at $x = 4$,		
	(a) f has irremovable discontinuity.	(b)	f is continuous
	(c) f has removable discontinuity	(d)	None of these
3	If $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2\\ 5, & x = 2 \end{cases}$		
	Then at x = 2		
	(a) f has removable discontinuity	(b)	f is continuous
	(c) f has irremovable discontinuity	(d)	f is continuous if $f(2) = 3$.
4	Let $f(x) = \begin{cases} \frac{e^{x} - 1}{\log(1 + 2x)}, x \neq 0\\ 7, x = 0 \end{cases}$		
	Then at $x = 0$,		
	(a) f has removable discontinuity	(b)	f is continuous
	(c) f has irremovable discontinuity	(d)	f is continuous if $f(0) = 2$.
5	If $f(x) = \begin{cases} \frac{x - x }{x}, & x \neq 0 \\ 2, & x = 0 \end{cases}$		
	Then at x= 2,		
	(a) f has removable discontinuity	(b)	f is continuous
	(c) f has irremovable discontinuity	(d)	f is continuous if $f(0) = 2$.
CS 5	A function $f(x)$ is said to be continuous at if the value of the function at $x = c$ equals	x = c ,if the limi	the function is defined at $x = c$ and t of the function at $x = c$.

	i.e $\lim_{x\to c} f(x) = f(c)$.							
	If the function $f(x)$ is not continuous at $x = c$, we say that f is discontinuous at c, and c is called the point of discontinuity of f.							
	Based on the above information answer the following questions:							
1	The number of points of discontinuity of $f(x) = in [3,7]$ is :							
	(a) 4	(b)	5					
	(c) 6	(d)	8					
2	Suppose f and g are two real functions continuous at a real number c then :							
	(a)f + g is continuous at $x = c$	(b)	f + g is discontinuous at $x = c$.					
	(c) $f + g$ may or may not be continuous at $x = c$	(d)	None of these					
3	Find the value of k, so that the given function $f(x)$ is continuous at $x = 5$.							
	$f(x) = \begin{cases} kx + 1, \ x \le 5\\ 3x - 5, \ x > 5 \end{cases}$							
	(a) 3/5	(b)	1/5					
	(c) 4/5	(d)	9/5					
4	If $f(x) = x $ is continuous and $g(x) = \sin x$ is continuous , then:							
	(a) $\sin x $ is continuous.	(b)	$\sin x $ is discontinuous.					
	(c) $\sin x $ may or may not be continuous.	(d)	None of these.					
5	Find the value of k, so that the given funct	tion f(x)	is continuous at $x = 2$.					
	$f(x) = \begin{cases} kx^2, x \le 2\\ 3, x > 2 \end{cases}$							
	(a) 1	(b)	1/4					
	(c) 3/4	(d)	11/4					

Answers

ASSERTION AND REASONING

1	D	2	A	3	В	4	A	5	A
6	С	7	D	8	E	9	D	10	E
11	A	12	A	13	A	14	A	15	A

CASE STUDY

CS-1	l) b	ll) c	III) d	iv) c	v) b
CS-2	I) a	ll) d	III) d	iv) d	V) b
CS-3	I) a	II) a	III) c	iv) a	V) b
CS-4	i) a	ii) a	iii) a	iv) a	v) c
CS-5	i) a	ii) a	iii) d	iv) a	v) c
APPLICATION OF DERIVATIVES

MULTIPLE CHOICE QUESTIONS

INCREASING AND DECREASING FUNCTIONS

1	Find the intervals in which the functions $f(x) = x^2 - 4x + 6$ is strictly increasing					
	(a) $(-\infty, 2) \cup (2, \infty)$	(b) (2,∞)				
	(c) (−∞,2)	$(d)(-\infty,2] \cup [2,\infty)$				
2	The function $f(x) = 3 - 4x + 2x^2 - \frac{1}{3}x^3$ i	S				
	(a) Increasing on R	(b) Decreasing on \Re				
	c) Neither increasing nor decreasing	d) None of these				
3	The real function $f(x) = 2x^3 - 3x^2 - 36x +$	7 is:				
	(a) Strictly increasing in $(-\infty, -2)$ and (b) Strictly decreasing in $(-2, 3)$					
	strictly decreasing in($-2, \infty$)					
	© Strictly decreasing in $(-\infty, 3)$) (d) Strictly decreasing in $(-\infty, -2) \cup$				
	and strictly increasing in $(3, \infty)$	(3,∞)				
4	The function $f(x) = -x^3 + 3x^2 - 3x + 100$,	$\forall x \in \mathcal{R}$ is				
	(a) Strictly increasing	(b) Strictly decreasing				
	(c) Neither increasing nor	(d) Decreasing				
	decreasing					
5	In which interval the function $f(x) = 3x^2 - 7x + 5$ is strictly increasing					
-	$\left(2\right)\left(-\infty\frac{7}{2}\right)$	(b) (-∞, ∞)				
	$\frac{(a)\left(-\infty,\frac{a}{6}\right)}{(-\infty)}$	(7)				
	(c) $\left(0, \frac{7}{6}\right)$	(d) $\left(\frac{7}{6},\infty\right)$				
6	The interval on which the function $f(x) = 2$	$2x^3 + 9x^2 + 12x - 1$ is decreasing is				
	(a) [−1, ∞)	(b) [- 2, - 1]				
	(c) (-∞, -2]	(d) [- 1, 1]				
7	The function $f(x) = 1 - x^3 - x^5$ is decre	asing for				
	(a) $1 \le x \le 5$	(b) x ≤ 1				
	(c) x ≥ 1	(d) all values of x				
8	If $y = x(x - 3)^2$ decreases for the values of	f 'x' given by				
	(a) 1 < x < 3	(b) x < 0				
	(c) x > 0	(d) $0 < x < \frac{3}{2}$				
9	The function $f(x) = x - \frac{1}{x}, x \in \Re, x \neq 0$ is					
	(a) Increasing for all $x \in \Re$	(b) Decreasing for all $x \in \Re$				
c) Increasing for all $x \in (0, \infty)$ (d) Neither increasing nor defined as the formula of the for						
10	The function $f(x) = \frac{5}{x} + 2$ is strictly decreasing in					

	(a) ${\cal R}$	(b) $\mathcal{R} - \{0\}$					
	(C) [0,∞)	(d) None					
11	Find the interval in which $f(x) = \log (1 + x)$	$-\frac{x}{2+x}$ is increasing.					
	(a) (0, ∞)	(b) (−∞, 0)					
	(c) (−∞, 3)	(d) none of these					
12	The function $f(x) = tanx - x$						
	(a) Always increases	(b) Always decreases					
	(c) Never increases	d) Sometimes increases and					
		sometimes decreases					
13	The function $f(x) = x + \sin x$ is						
	(a) Always increasing	(b) Always decreasing					
	(c) Increasing for certain range of x	(d) None of these					
14	The interval in which $f(x) = sinx + cosx$	$x, 0 \le x \le 2\pi$ is strictly decreasing in					
	(a) $\left[0,\frac{\pi}{2}\right]$	$(b)\left(\frac{\pi}{2},\frac{5\pi}{2}\right)$					
	$(a) e^{5\pi} a b$	$() (4^{+} 4^{+})$					
	$(C)(\frac{1}{4}, 2\pi)$	(d) $[0, \frac{1}{4})$					
15	The function $f(x) = 4\sin^3 x - 6\sin^2 x + 12 \sin^2 x$	nx + 100 is strictly					
	(a) Increasing in $\left(0, \frac{3\pi}{2}\right)$	(b) Decreasing in $\left(\frac{\pi}{2},\pi\right)$					
	(c) Decreasing in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	(d) Decreasing in $\left(0,\frac{\pi}{2}\right)$					
16	The length of the longest interval, in which the function $f(x) = 3sinx - 4sin^3x i$						
	increasing, is						
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{2}$					
	$(c) \frac{3\pi}{3\pi}$	(d) π					
17	The function $f(x) = \sin 3x$ is strictly decrea	sing on					
	(a) $\left[0,\frac{\pi}{\epsilon}\right]$	(b) $\left[0, \frac{\pi}{4}\right]$					
	$\left(c \right) \begin{bmatrix} \pi & \pi \end{bmatrix}$	$(d) \begin{bmatrix} 0 & \pi \end{bmatrix}$					
10		(0, 0, 2)					
10	Which of the following functions is decrea	asing on $\left(0, \frac{\pi}{2}\right)$					
	(a) Sin2x	(b) tan x					
	(c) cosx	(d) cos3x					
19	The function $f(x) = \log x$ is strictly increasing the function $f(x) = \log x$.	ng on					
	(a) (0, ∞)	(b) (−∞, 0)					
	(C) (−∞, ∞)	(d) None					
20	The function $y = 2x^2 - \log x $, $x \neq 0$ decrea	ases when x e					
	(a) (-1,1)	(b) $\mathcal{R} - \{-\frac{1}{2}, \frac{1}{2}\}$					
	(c) $(-\frac{1}{2}, 0) \cup (\frac{1}{2}, \infty)$	(d) $(-\infty, -\frac{1}{2}) \cup (0, \frac{1}{2})$					
21	The function $f(x) = e^{2x}$ is strictly increasing	g on					
	(b) (−∞, 0)						
	(C)(−∞, ∞)	(d) None					

22	The intervals in which $y = x^2 e^{-x}$ is increasing				
	(a) (−∞, ∞)	(b) (- 2, 0)			
	(c) (2, ∞)	(d) (0, 2)			
23	The function $f(x) = x - [x]$ in the interval [0, 1] is				
	(a) Increasing	(b) Decreasing			
	(c) Neither increasing and decreasing	(d) None of the above.			
24	The function $f(x) = x^3 - 9kx^2 + 27x + 30$ is increasing on \mathcal{R} , if				
	(a) $-1 \le k < 1$	(b) k <– 1 or k > 1			
	(c) 0 < k < 1	(d) - 1 < k < 0			
25	The value of 'b'for which the function $f(x) = x + \cos x + b$ is strictly decreasing over				
	\mathcal{R} is :				
	(a) b < 1	(b) No value of b exists(
	(c) b ≤ 1	(d) b ≥ 1			

TANGENTS AND NORMALS

26	The tangent to the parabola $x^2 = 2y$ at the point $(1, \frac{1}{2})$ makes with the x – axis an					
	angle of	2				
	(a) 0°	(b) 45°				
	(c) 30°	(d) 60°				
27	The curve $y = x^{\frac{1}{5}}$ has at (0, 0)					
	(a) A vertical tangent (parallel to y	(b) A horizontal tangent (parallel to x -				
	– axis)	axis)				
	(c) An oblique tangent	(d) No tangent				
28	The slope of the normal to the curve $y = 2$	$2x^2 + 3 \sin x$ at x = 0 is				
	(a) $\frac{1}{3}$	(b) 3				
	(c) – 3	$(d) - \frac{1}{3}$				
29	The slope of the tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point (2,					
	-1) is					
	(a) $\frac{22}{7}$	(b) $\frac{6}{7}$				
	(c) $\frac{7}{6}$	$(d) - \frac{6}{7}$				
30	The slope of the tangent to the curve x = asint and y = $a(\cos t + \log(\tan(\frac{t}{2})))$ at the					
	point 't' is	-				
	(a) tan t	(b) cot t				
	(c) $\tan\left(\frac{t}{2}\right)$	(d) none of these				
31	The slope of the normal to the curve $x =$	$a(\theta - \sin\theta), y = a(1 - \cos\theta)$ at $\theta = \frac{\pi}{2}$ is				
	(a) 0	(b) undefined				
	(c) – 1	(d) 1				
32	Tangents to the curve $x^2 + y^2 = 2$ at the p	oints (1, 1) and (– 1, 1) are				
	(a) Parallel	(b) Perpendicular				
	© Intersecting but not at right angles	d) None of these				

33	The equation of the tangent to the curve $y^2 = 4ax$ at the point (at ² , 2at) is			
	(a) $ty = x + at^2$	(b) $ty = x - at^2$		
	(c) $tx + y = at^3$	(d) none of these		
	2			
34	The normal to the curve $x^2 = 4y$ passing	through (1, 2) is		
	(a) $x + y = 3$	(b) $x - y = 3$		
	(c) x + y = 1	(d) $x - y = 1$		
35	The normal at the point (1, 1) on the cur	$ye 2y + x^2 = 3$ is		
	$\mathbf{x} + \mathbf{y} = 0$	(b) $x - y = 0$		
	(c) x + y + 1 = 0	(d) $x - y = 0$		
36	The equation of the normal to the curve	y = sinx at (0, 0) is		
	(a) $x = 0$	(b) $x + y = 0$		
	(c) $y = 0$	(d) $x - y = 0$		
37	The equation of the normal to the curve	$3x^3 - y^2 = 8$ which is parallel to the line x		
	+ 3v = 8 is	bx y = 0 which is parallel to the line x		
	(a) 3x - y = 8	(b) $3x + y + 8 = 0$		
	(a) (bx + y + b) = 0 (c) x + 3y + 8 = 0	(0) cx + y + c = c (d) x + 3y = 0		
20	For which value of 'm'is the line $y = my$	1 a tangent to the curve $y^2 - 4y^2$		
50	For which value of this the line y – thx -	The tangent to the curve $y = 4x$?		
	(2) 1/2	(b) 1		
	$(a) \frac{1}{2}$			
29				
55	If a tangent to the curve $y' + 3x - 7 = 0$	at the point (h, k) is parallel to the line x –		
33	y = 4, then the value of 'k' is $y = 4$	at the point (h, k) is parallel to the line x –		
	y = 4, then the value of 'k' is (a) $-\frac{2}{3}$	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$		
	y = 4, then the value of 'k' is $\frac{(a) - \frac{2}{3}}{(c) \frac{2}{3}}$	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$		
	y = 4, then the value of 'k' is $(a) -\frac{2}{3}$ $(c) \frac{2}{3}$	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$		
40	y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ingent makes an angle of 45° with the x –		
40	y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x –		
40	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $(\frac{1}{2}, \frac{1}{4})$	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ingent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$		
40	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) (2, -2)		
40	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $(\frac{1}{2}, \frac{1}{4})$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) (2, -2) /e y ² = 4x at the point		
40	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $(\frac{1}{2}, \frac{1}{4})$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) (2, -2) /e y ² = 4x at the point (b) (2, 1)		
40	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) (2, -2) /e y ² = 4x at the point (b) (2, 1) (d) (-1, 2)		
40 41 42	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) $(2, -2)$ /e y ² = 4x at the point (b) $(2, 1)$ (c) $(-1, 2)$ + 5 at which the tangent is y = x – 11 is/		
40 41 42	The point on the curve $y^2 + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are:	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) (2, -2) /e y ² = 4x at the point (b) (2, 1) (d) (-1, 2) + 5 at which the tangent is y = x – 11 is/		
40 41 42	The point of the curve $y' + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) $(2, -2)$ /e y ² = 4x at the point (b) $(2, 1)$ (d) $(-1, 2)$ + 5 at which the tangent is y = x – 11 is/		
40 41 42	The point of the curve $y' + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19) (c) (±2, 19)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) (2, -2) /e y ² = 4x at the point (b) (2, 1) (d) (-1, 2) + 5 at which the tangent is y = x – 11 is/ (b) (2, -9) (c) (-2, 19) and (2, -9)		
40 41 42 42	The point (s) on the curve $y + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $(\frac{1}{2}, \frac{1}{4})$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curv (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19) (c) (±2, 19)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) $(2, -2)$ /e y ² = 4x at the point (b) $(2, 1)$ (d) $(-1, 2)$ + 5 at which the tangent is y = x – 11 is/ (b) $(2, -9)$ (c) $(-2, 19)$ and $(2, -9)$		
40 41 42 43	The point (s) on the curve $y + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19) (c) (±2, 19) The tangent to the curve $y = 2x^2 - x + 1$	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) $(2, -2)$ /e y ² = 4x at the point (b) $(2, 1)$ (d) $(-1, 2)$ + 5 at which the tangent is y = x – 11 is/ (b) $(2, -9)$ (c) $(-2, 19)$ and $(2, -9)$ 1 is parallel to the line y = 3x + 9 at the		
40 41 42 43	The point (s) on the curve $y + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $(\frac{1}{2}, \frac{1}{4})$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19) (c) (±2, 19) The tangent to the curve $y = 2x^2 - x + point$ (a) (2, 3)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) $(2, -2)$ /e y ² = 4x at the point (b) $(2, 1)$ (d) $(-1, 2)$ + 5 at which the tangent is y = x – 11 is/ (b) $(2, -9)$ (c) $(-2, 19)$ and $(2, -9)$ 1 is parallel to the line y = 3x + 9 at the		
40 41 42 43	The point (s) on the curve $y + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19) (c) (±2, 19) The tangent to the curve $y = 2x^2 - x + point$ (a) (2, 3) (c) (2, 1)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (d) $(2, -2)$ /e y ² = 4x at the point (b) $(2, 1)$ (d) $(-1, 2)$ + 5 at which the tangent is y = x – 11 is/ (b) $(2, -9)$ (c) $(-2, 19)$ and $(2, -9)$ 1 is parallel to the line y = 3x + 9 at the (b) $(2, -1)$ (c) $(1, 2)$		
40 41 42 43	The point (s) on the curve $y + 3x - 7 = 0$ y = 4, then the value of 'k' is (a) $-\frac{2}{3}$ (c) $\frac{2}{3}$ The point on the curve $y^2 = x$, where ta axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (c) (4, 2) The line $y = x + 1$ is a tangent to the curve (a) (1, 2) (c) (1, -2) The point (s) on the curve $y = x^3 - 11x$ are: (a) (-2, 19) (c) (±2, 19) The tangent to the curve $y = 2x^2 - x + point$ (a) (2, 3) (c) (2, 1)	at the point (h, k) is parallel to the line x – (b) $\frac{3}{2}$ (d) $-\frac{3}{2}$ ngent makes an angle of 45° with the x – (b) $(\frac{1}{4}, \frac{1}{2})$ (d) (2, -2) /e y ² = 4x at the point (b) (2, 1) (d) (-1, 2) + 5 at which the tangent is y = x – 11 is/ (b) (2, -9) (c) (-2, 19) and (2, -9) 1 is parallel to the line y = 3x + 9 at the (b) (2, -1) (c) (1, 2)		

44	The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to $x - 12x + 18$				
	axis are:				
	(a) $(2, -2), (-2, -34)$	(b) $(2, 34), (-2, 0)$			
45	(c) (0, 34), (-2, 0) $x^2 - x^2$	(d) (2, 2), (- 2, 34)			
45	The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to y – axis				
	are				
	(a) $(0, \pm 4)$	(b) $(\pm 4, 0)$			
	$(c) (\pm 3,0)$	(d) $(0, \pm 3)$			
46	The point at which the normal to the curve $y = x + \frac{1}{x}$, $x > 0$ is perpendicular to the				
	line $3x - 4y - 7 = 0$ is:				
	(a) $\left(2, \frac{5}{2}\right)$	(b) $(\pm 2, \frac{5}{2})$			
	(C) $\left(-\frac{1}{2},\frac{5}{2}\right)$	(d) $\left(\frac{1}{2}, \frac{5}{2}\right)$			
47	The tangent to the curve $y = e^{2x}$ at the p	oint (0, 1) meets x – axis at			
	(a) (0, 1)	(b) $\left(-\frac{1}{2}, 0\right)$			
	(c) (2, 0)	(d) (0, 2)			
48	The equation of the tangent to the curve	$y(1 + x^2) = 2 - x$, where it cuts x – axis is:			
	(a) $x + 5y = 2$	(b) $x - 5y = 2$			
40	(C) 5X - Y = 2 The points on the surve $0y^2 - y^3$ w	(0) 5X + Y = 2			
45	intercepts with the axes are				
	(a) $\left(4,\pm\frac{8}{3}\right)$	(b) $\left(4, -\frac{8}{3}\right)$			
	(c) $\left(4, \pm \frac{3}{8}\right)$	(d) $(\pm 4, \frac{3}{8})$			
50	The angle between the tangents to the and $(3, 0)$ is	curve $y = x^2 - 5x + 6$ at the points (2, 0)			
	(a) $\frac{\pi}{c}$	(b) $\frac{\pi}{4}$			
	$\frac{6}{(c)}\frac{\pi}{2}$	$\left(d \right) \frac{\pi}{2}$			
51	If the curve av $+x^2 = 7$ and $x^3 = v$, cut or	1×2			
	(a)1	(b) 0			
	(c) - 6	(d) 6			
52	If the curves $y = 2e^x$ and $y = ae^{-x}$ interse	ect orthogonally then a =			
	(a) $\frac{1}{2}$	(b) $-\frac{1}{2}$			
	(c) 2	(d) 2e ²			
	MAXIMA AN	D MINIMA			
53	The function $f(x) = x^x$ has a stationary	point at			
	(a) x = e	(b) $x = \frac{1}{2}$			
	(c) x = 1	$(d) x = \sqrt{e}$			

54	At $x = \frac{5\pi}{6}$, $f(x) = 2 \sin 3x + 3 \cos 3x$ is					
	(a) Maximum	(b) Minimum				
	(c) Zero	(d) Neither maximum nor minimum				
55	The function $f(x) = 2x^3 - 3x^2 - 12x + 4$, has					
	(a) Two points of local maximum	(b) Two points of local minimum				
	(c) One maxima and one minima	(d) No maxima or minima				
56	Find all the points of local maxima and local minima of $f(x) = (x - 1)^3 (x + 1)^2$					
	(a) $1, -1, -\frac{1}{r}$	(b) 1, – 1				
	(c) 1, $-\frac{1}{5}$	(d) $-1, -\frac{1}{5}$				
57	Find the points at which $f(x) = (x - 2)^4 (x - 2)^4$	+ 1) ³ has points of inflection				
	(a) x = - 1	(b) x = 1				
	(c) $x = 2$	(d) $x = \frac{1}{2}$				
58	If x is real, the minimum value of $x^2 - 8x$	+ 17 is				
	(a) - 1	(b) 0				
50						
23	The least value of the function $f(x) = ax$	$+\frac{1}{x}$ (a > 0, b > 0, x > 0) is				
	(a) \sqrt{ab}	(b) $2\sqrt{ab}$				
	(c) $\frac{\sqrt{ab}}{2}$	(d) ab				
60	For all real x, the minimum value of $\frac{1-x+x}{1+x+x}$	$\frac{2}{2}$ is				
	(a) 0	(b) 1				
	(c) 3	(d) $\frac{1}{3}$				
61	The maximum value of $[x(x-1)+1]^{\frac{1}{3}}, 0$	$\leq x \leq 1$ is				
	(a) $(3)^{\frac{1}{3}}$	(b) $\frac{1}{2}$				
	(c) 1	(d) 0				
62	Find the maximum value of $f(x) = sin(sinx)$	(i) for all $x \in \Re$				
	$(a) - \sin 1$	$(b) \sin 6$ $(d) = \sin 3$				
63	The maximum value of sinx. cosx is					
	$(a)^{\frac{1}{2}}$	(b) $\frac{1}{2}$				
	$(c)\sqrt{2}$	(d) $2\sqrt{2}$				
64	The maximum value of $x^{\frac{1}{x}}, x > 0$ is					
	(a) $e^{\frac{1}{e}}$	(b) $\left(\frac{1}{e}\right)^e$				
	(c) 1	(d) None				
65	The maximum value of $\left(\frac{1}{x}\right)^x$ is:					
	(a) e	(b) <i>e^e</i>				
	(c) $e^{\frac{1}{e}}$	(d) $(\frac{1}{e})^{\frac{1}{e}}$				
		۲				

	$(a)^{\frac{1}{2}}$			
	$(\alpha)_{\rho}$	(b) e		
	$(C) - \frac{1}{e}$	(d) – e		
67	It is given that at $x = 1$, the function $f(x)$ value, then the value of 'k'	$) = x^3 - 12x^2 + kx + 7$ attains maximum		
	(a) 10	(b) 12		
		(d) 13		
68	The sum of two positive numbers is 14 and their sum is least, then the numbers are			
	(a) 6, 7	(b) 7, 7		
	(c) 10, 4	(d) 9, 5		
69	Divide 20 into two parts such that the p other is maximum. The two parts are	product of one part and the cube of the		
	(a) 10, 10	(b) 12, 8		
	(c) 15, 5	(d) None of these		
70	The area of a trapezium is defined by fun	ction f and given by		
	$f(x) = (10 + x)\sqrt{100 - x^2}$, then the area	when it is maximised is:		
	(a) 75 cm^2	(b) $7\sqrt{3}$ cm ²		
	(c) 75\3 cm ⁻	(d) 5cm ⁻		
71	The point on the curve $x^2 = 2y$ which is not	earest to the point (0, 5)		
	(a) $(2\sqrt{2}, 4)$	(b) $(2\sqrt{2}, 0)$		
	(c) (0, 0)			
72	The smallest value of the polynomial x^3 –	- 18x ² + 96x in [0, 9] is		
	(a) 126	(b) 0		
	$\begin{bmatrix} (c) & 133 \end{bmatrix}$			
/3	Let $f(x) = 2x^3 - 3x^2 - 12x + 5$ on $[-2, 4]$.	The relative maximum occurs at x =		
	(a) - 2 (c) 2	(b) - 1 (d) 4		
74	The absolute minimum value of the funct	ion f(x) = 2sinx in $\left[0, \frac{3\pi}{2}\right]$ is		
	(a) – 2	(b) 2		
	(c) 1	(d) – 1		
75	The least value of the function $f(x) = 2\cos x$	sx + x in the closed interval $\left[0, \frac{\pi}{2}\right]$ is:		
	(a) 2	(b) $\frac{\pi}{6} + \sqrt{3}$		
	(c) $\frac{\pi}{2}$	(d) The least value does not exist		

76	For what value of 'x' in the interval $[0, \pi]$ does the function $f(x) = \sin 2x$ attains the										
	$\left[(2) \frac{\pi}{2} \right]$				(b) $\frac{\pi}{2}$						
	$\left(a\right) \frac{1}{2}$				$(D) \frac{1}{4}$						
	$\left \begin{array}{c} (C) \frac{1}{3} \end{array} \right $					(a) -	5				
77	Th	e maxim	um value	e of the s	lope of th	ne c	urve	y = – x ³ +	+ 3x ² + 9x	x – 27 is:	
	(a) 0			(b) 12							
	(0	c) 16					(d) :	32			
78	Th	e shortes	st distand	ce betwee	en line y	- X	= 1 a	nd curve	$x = y^2$ is		
	(0	$\left(1\right)\frac{4}{\sqrt{3}}$					(b) `	/3			
	(0	() $\frac{3\sqrt{2}}{2}$					(d) ,	$\frac{4}{8}$			
		<u> 8</u>						3V Z			
79	Th	e functio	n f(x) =	$x + \frac{4}{r}$ ha	is						
		(a)	A local m	naximum	at x = 2		((b) A loca	al minim	um at x	= 2 and
			and loca	l minima	at $x = -2$	2		local r	naximur	n at x = -	2
		(c) Abs	solute m	axima at	x = 2 a	nd	(d) Absolute minima at $x = 2$ and				
	absolute minima at $x = -2$				absolute maxima at $x = -2$						
Ans	we	rs:									
Q: 1		(b)	Q: 2	(b)	Q: 3	(b))	Q: 4	(b)	Q: 5	(d)
Q: 6	5	(b)	Q: 7	(d)	Q: 8	(a))	Q: 9	(a)	Q: 10	(b)
Q: 1	1	(a)	Q: 12	(a)	Q: 13	(a))	Q: 14	(b)	Q: 15	(b)
Q: 1	6	(a)	Q: 17	(C)	Q: 18	(C)		Q: 19	(a)	Q: 20	
Q: 2	21	(C)	Q: 22	(d)	Q: 23	(a))	Q: 24	(a)	Q: 25	(b)
Q: 2	26	(b)	Q: 27	(a)	Q: 28	(d))	Q: 29	(b)	Q: 30	(b)
Q: 3	81	(C)	Q: 32	(b)	Q: 33			Q: 34	(a)	Q: 35	(b)
Q: 3	86		Q: 37	(C)	Q: 38	(b))	Q: 39	(d)	Q: 40	(b)
Q: 4	1	(a)	Q: 42	(b)	Q: 43	(d))	Q: 44	(d)	Q: 45	(C)
Q: 4	6	(a)	Q: 47	(b)	Q: 48	(a))	Q: 49	(a)	Q: 50	(d)
Q: 5	51	(d)	Q: 52	(a)	Q: 53	(b))	Q: 54	(a)	Q: 55	(c)
Q: 5	6	(a)	Q: 57	(a)	Q: 58	(C)		Q: 59	(b)	Q: 60	(d)
Q: 6	51	(c)	Q: 62	(C)	Q: 63	(b))	Q: 64	(a)	Q: 65	(c)
Q: 6	6	(b)	Q: 67	(C)	Q: 68	(b))	Q: 69	(C)	Q: 70	(c)
Q: 7	'1	(a)	Q: 72	(b)	Q: 73	(b))	Q: 74	(a)	Q: 75	(c)
Q: 7	Q: 76 (b) Q: 77 (b) Q: 78 (c)			Q: 79	(b)						

ASSERTION AND REASONING TYPE QUESTIONS

Assertion (A): The function f(x) = x³ - 3x² + 6x - 100 is strictly increasing on R
 Reason (R) : A strictly increasing functions is an injective function.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

2) Assertion (A): The function $y = [x(x-2)]^2$ is increasing in $(0, 1) \cup (2, \infty)$

Reason (R) : $\frac{dy}{dx} = 0$, when x = 0, 1, 2.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

3) Assertion (A) : The function $y = \log(1 + x) - \frac{2x}{2+x}$ is decreasing throughout its domain.

Reason (R) : The domain of the function $y = \log(1 + x) - \frac{2x}{2+x}$ is (-1, ∞).

- A. Both A and R are true and R is the correct explanation oF A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

4) Assertion (A): $f(x) = \frac{1}{x-7}$ is decreasing $x \in \mathcal{R} - \{7\}$.

Reason(R) : $f'(x) < 0, \forall x \neq 7$.					
A. Both A and R are true and R is the correct explanation ofr A					
B. Both A and R are true but R is NOT the correct explanation of A					
C. A is true but R is false.					
D. A is false but R is true.					
E. Both A and R are false.					
5) Assertion (A) : $f(x) = e^x$ is an increasing function, $\forall x \in \mathcal{R}$					
Reason (R) : If $f'(x) \le 0$, then $f(x)$ is an increasing function.					
A. Both A and R are true and R is the correct explanation of A					
B. Both A and R are true but R is NOT the correct explanation of A					
C. A is true but R is false.					
D. A is false but R is true.					
E. Both A and R are false.					
6) Assertion (A) : Let $f(x) = e^{\frac{1}{x}}$ is defined for all real values of x.					
1					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of A					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of A					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false.					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true. E. Both A and R are false. 7) Assertion (A) : $f(x) = \log x$ is defined for all $x \in (0, \infty)$.					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.7) Assertion (A) : $f(x) = logx$ is defined for all $x \in (0, \infty)$.Reason (R) :If $f'(x) > 0$, then $f(x)$ is strictly increasing function.					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.7) Assertion (A) : $f(x) = logx$ is defined for all $x \in (0, \infty)$.Reason (R) :If $f'(x) > 0$, then $f(x)$ is strictly increasing function.A. Both A and R are true and R is the correct explanation of A					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.7) Assertion (A) : $f(x) = logx$ is defined for all $x \in (0, \infty)$.Reason (R) :If $f'(x) > 0$, then $f(x)$ is strictly increasing function.A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of A					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.7) Assertion (A) : $f(x) = logx$ is defined for all $x \in (0, \infty)$.Reason (R) :If $f'(x) > 0$, then $f(x)$ is strictly increasing function.A. Both A and R are true and R is the correct explanation of AB. Both A and R are true and R is the correct explanation of AC. A is true but R is false.					
Reason : $f(x) = e^{\frac{1}{x}}$ is always decreasing as $f'(x) < 0$ in $x \in \mathcal{R}$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.7) Assertion (A) : $f(x) = logx$ is defined for all $x \in (0, \infty)$.Reason (R) :If $f'(x) > 0$, then $f(x)$ is strictly increasing function.A. Both A and R are true and R is the correct explanation of AB. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.					

```
8) Assertion (A) : If f(x) = \log(\cos x), x > 0 is strictly decreasing in \left(0, \frac{\pi}{2}\right).
    Reason (R) : If f'(x) \ge 0, then f(x) is strictly increasing function
   A. Both A and R are true and R is the correct explanation of A
   B. Both A and R are true but R is NOT the correct explanation of A
   C. A is true but R is false.
   D. A is false but R is true.
   E. Both A and R are false.
9) Assertion (A) : If f(x) = \log(sinx), x > 0 is strictly decreasing in \left(\frac{\pi}{2}, \pi\right).
   Reason (R) : If f'(x) \ge 0, then f(x) is strictly increasing function
   A. Both A and R are true and R is the correct explanation ofr A
   B. Both A and R are true but R is NOT the correct explanation of A
   C. A is true but R is false.
    D. A is false but R is true.
                                    E. Both A and R are false.
10)Consider the function f(x) = \sin^4 x + \cos^4 x.
   Assertion (A): f(x) is increasing in \left[0, \frac{\pi}{4}\right].
   Reason (R): f(x) is decreasing in \left[\frac{\pi}{4}, \frac{\pi}{2}\right].
   A. Both A and R are true and R is the correct explanation ofr A
   B. Both A and R are true but R is NOT the correct explanation of A
   C. A is true but R is false.
                                    E. Both A and R are fal
   D. A is false but R is true.
```

11) Assertion (A) :If f(x) = tan⁻¹(sinx + cosx), x > 0 is always strictly increasing function in the interval x ∈ (0, π/4)
Reason (R) : For the given function f(x), f'(x) > 0 if x ∈ (0, π/4).
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

12) Assertion (A) : If f(x) = sin (2x + π/4) is strictly increasing in x ∈ (3π/8, 5π/8)
Reason (R) : The function given above is strictly increasing and decreasing in (3π/8, 5π/8)
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is NOT the correct explanation of A
C. A is true but R is false.
D. A is false but R is true.
E. Both A and R are false.

13) Assertion (A):If $f(x) = \cos\left(2x + \frac{\pi}{4}\right)$ is strictly increasing in $x \in \left(\frac{3\pi}{8}, \frac{7\pi}{8}\right)$ Reason (R):The function given above is strictly increasing in $\left(\frac{3\pi}{8}, \frac{7\pi}{8}\right)$ A. Both A and R are true and R is the correct explanation of AB. Both A and R are true but R is NOT the correct explanation of AC. A is true but R is false.D. A is false but R is true.E. Both A and R are false.

14) Assertion (A) :		If $f(x) = a(x + \sin x)$ is increasing function if $a \in (0, \infty)$					
Reason (R)	:	The given function $f(x)$ is increasing only if $a \in (0, \infty)$					
	<u> </u>						
A. Both A and	A. Both A and R are true and R is the correct explanation of A						
B Both A and	P. Both A and D are true but D is NOT the correct evaluation of A						
D. DOIN A and K are true but K IS NOT the correct explanation of A							
C A is true but	C. A is true but R is false						
D. A is false bu	ut R is f	irue.					
E. Both A and	R are f	alse.					

15) Assertion (A) :For all values of 'a', f(x) = sinx - ax + b is decreasing on $x \in \mathcal{R}$.

Reason (R) :Given function f(x) is decreasing only if $a \in [1, \infty)$

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

16) **Assertion (A)** :For the curve $x^3 + y^3 = 6xy$, the slope of the tangent at (3, 3) is 2.

Reason (R) :The $\left(\frac{dy}{dx}\right)_{at\ (x_1,y_1)}$ gives slope of tangent of y = f(x) at (x_1, y_1) .

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

17) Assertion (A) :There exists no tangent to the curve $= \sqrt{3x - 2}$, which is parallel to the line 4x - 2y + 5 = 0. Reason (R) : Tangent to the curve $y = \sqrt{3x - 2}$ exists at $\left(\frac{41}{48}, \frac{3}{4}\right)$. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true. E. Both A and R are false. 18) Assertion (A) : There exists a unique tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) and is
parallel to the line x - y = 4.Reason (R) : The value of $k = -\frac{3}{2}$.A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

C. A is true but R is false.

D. A is false but R is true.

E. Both A and R are false.

19) Assertion (A) : For the curve y = tanx , the tangent and normal exists at a point (0, 0).
Reason (R) : Tangent and Normal lines are x - y = 0 and x + y = 0.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is NOT the correct explanation of A
C. A is true but R is false.
D. A is false but R is true.
E. Both A and R are false.

20)Assertion (A) :The curve y = x² represents a parabola with vertex at origin.
 Reason (R) :For a curve Tangent and Normal lines are always perpendicular at thepoint of contact.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

21)Assertion (A) : Slope of the curve given as y² = x at x = 1 not defined.
Reason (R) : Slope of the curve given as y² = x at x = is ± 1/2.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is NOT the correct explanation of A
C. A is true but R is false.
D. A is false but R is true.
E. Both A and R are false.

22) Assertion (A) : At $x = \frac{\pi}{6}$, the curve $y = 2\cos^2(3x)$ has a vertical tangent. Reason (R) : The slope of tangent to the curve $y = 2\cos^2(3x)$ at $x = \frac{\pi}{6}$ is zero.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

23) **Assertion (A)** : The equation of tangent to the curve y = sinx at the point (0, 0) is y = x.

Reason (R) : if $y = \sin x$, then $\frac{dy}{dx}$ at x = 0 is 1.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

24) Assertion (A) :The slope of normal to the curve $x^2 + 2y + y^2 = 0$ at (- 1,2) is - 3.The slope of tangent to the curve $x^2 + 2y + y^2 = 0$ at (-1,The slope of tangent to the curve $x^2 + 2y + y^2 = 0$ at (-1,

2) is $\frac{1}{3}$.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

C. A is true but R is false.

D. A is false but R is true.

E. Both A and R are false.

25)The equation of the tangent at (2, 3) on the curve $y^2 = ax^3 + b$ is y = 4x - 5.

Assertion (A) : The value of a is ± 2

Reason (R) : The value of b is ±7.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

C. A is true but R is false.

D. A is false but R is true.

E. Both A and R are false.

26) **Assertion (A)** :For all values of 't' the tangent to the curve $x = t^2 - 1$, $y = t^2 - t$ is perpendicular to the x – axis.

Reason (R) :For lines perpendicular to x - axis, their slopes will not defined always.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

27) **Assertion (A)** : The points of contact of the vertical tangents to $x = 5 - 3 \cos\theta$, $y = 3 + 5 \sin\theta$ are (2, 3) and (8, 3). **Reason (R)** :For vertical tangent $\frac{dx}{d\theta} = 0$.

A. Both A and R are true and R is the correct explanation ofr A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

28) **Assertion (A)** :he curves $x^3 - 3xy^2 = a$ and $3x^2y - y^3 = b$ cut each other, where 'a' and 'b' are some constants.

Reason (R) :The given curves cut orthogonally.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

29) Assertion (A) :The curves $x^2 = y$ and $y^2 = x$ cut at $\frac{\pi}{2}$ and $\tan^{-1}\left(\frac{3}{4}\right)$.

Reason (R) :Angle between two lines is given by $\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$ where m_1

and m₂ are

slopes of lines.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

30) Assertion (A) :Equation of tangent at the point (2, 3) on the curve y² = ax³ + b is y = 4x - 5.
Reason (R) : Value of a = 2 and b = -7.
A. Both A and R are true and R is the correct explanation of r A
B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

31) Assertion (A) : Angle between the tangent lines $x^2 + y^2 = 1$ at the points (1, 0) and (0, 1) is $\frac{\pi}{2}$. :Angle between two lines is given by $\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$ where m₁ Reason (R) and m₂are slopes oflines. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true. E. Both A and R are false. 32) Assertion (A) : Two curves $ax^2 + by^2 = 1$ and $a'x^2 + b'y_2 = 1$ are orthogonal if $\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}$ **Reason (R)** :Two curves intersect orthogonally at a point if product of their slopes at that point is -1. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true.

E. Both A and R are false.

33) Assertion (A) : For f(x) = x + 1/x, x ≠ 0, maximum and minimum values both exists.
Reason (R) : Maximum value of f(x) is less than its minimum value.
A. Both A and R are true and R is the correct explanation ofr A
B. Both A and R are true but R is NOT the correct explanation of A
C. A is true but R is false.

D. A is false but R is true.

E. Both A and R are false.

34) Assertion (A) : f(x) = sin2x + 3 is defined for all real values of x. Reason (R) : Minimum value of f(x) is 2 and Maximum value is 4.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

35) Assertion (A) : $f(x) = \sin(sinx)$ is defined for all real values of x. Reason (R) : Minimum and minimum values does not exist.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

36) Assertion (A) : f(x) = -|x + 1| + 3 is defined for all real values of x except x = -1. Reason (R) : Maximum value of f(x) is 3 and Minimum value does not exist.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

37) The Sum of surface areas (S) of a sphere of radius 'r' and a cuboid with sides $\frac{x}{3}$, x and 2x is a constant.

Assertion (A):The sum of their volumes (V) is minimum when x equals three times the radius of the sphere.

Reason(R) : V is minimum when $r = \sqrt{\frac{S}{54+4\pi}}$. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true.

E. Both A and R are false.

38)AB is the diameter of a circle and C is any point on the circle.

Assertion (A) : The area of $\triangle ABC$ is maximum when it is isosceles.

Reason (R) : $\triangle ABC$ is a right – angled triangle.

A. Both A and R are true and R is the correct explanation ofr A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

39)A cylinder is inscribed in a sphere of radius R.
Assertion (A) : Height of the cylinder of maximum volume is ^{2R}/_{√3} units.
Reason (R) : The maximum volume of the cylinder is ^{4πR³}/_{√3} cubic units.
A. Both A and R are true and R is the correct explanation ofr A
B. Both A and R are true but R is NOT the correct explanation of A
C. A is true but R is false.
D. A is false but R is true.
E. Both A and R are false.
40)Assertion (A) : The altitude of the cone of maximum volume that can be inscribed in a sphere of radius 'r' is ^{4r}/₃.
Reason (R) : The maximum volume of the cone is ⁸/₂₇ of the volume of the sphere.

- A. Both A and R are true and R is the correct explanation ofr A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

41) **Assertion (A):** Both sinx and cosx are decreasing functions in $\left(\frac{\pi}{2}, \pi\right)$

Reason (R): If a differentiable function decreases in (a, b), then its derivatives also decreases in (a, b).

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

42) **Assertion (A):** Let f: $R \rightarrow R$ be a function such that $f(x) = x^3 + x^2 + 3x + \sin x$. Then f is an increasing function.

Reason (R) : If $f'(x_0) < 0$, then f(x) is decreasing function.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

43) Assertion (A):The graph $y = x^3 + ax^2 + bx + c$ has extremum, if $a^2 < 3b$.Reason (R):A function, y = f(x) has an extremum, if $\frac{dy}{dx} < 0$ or $\frac{dy}{dx} > 0$ for all $x \in \mathcal{R}$.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

44) Assertion (A): If $f'(x) = (x-1)^3(x-2)^8$, then f(x) has neither maximum nor minimum at x = 2. **Reason (R)** : f'(x) changes sign from negative to positive at x = 2. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true. E. Both A and R are false. 45)Consider the function $f(x) = x^{\frac{1}{3}}$, $x \in \mathcal{R}$ **Assertion (A)** : f has a point of inflexion at x = 0. **Reason (R)** : f''(0) = 0. A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true. E. Both A and R are false. 46) Assertion (A): A window has the shape of a rectangle surmounted by an equilateral triangle. If theperimeter of the window is 12 m, then length 1.782 m and breadth 2.812 m of the rectangle will produce the largest area of the window. For maximum or minimum f'(x) = 0. Reason (R) : A. Both A and R are true and R is the correct explanation of A B. Both A and R are true but R is NOT the correct explanation of A C. A is true but R is false. D. A is false but R is true. E. Both A and R are false.

CASE STUDY

CS	A potter made a mud vessel, where the shape of the							
1	pot is based on $f(x) = x - 3 + x-2 $, where $f(x)$							
	represents the height of the pot.							
1	When $x > 4$ What will be the height in term	ns of x ?						
•	A. $x-2$ B. $x-3$							
2	Will the slope vary with x value?	D. 3-2x						
_	A. Yes	B. No						
		D. Data is not sufficient to say						
3	$\frac{0}{2} = \frac{1}{2}$	D. Data is not sufficient to say						
•	$\frac{dx}{dx} = 3$	P 0						
	A. 2	B 2						
	C. Function is not	D. 1						
4	differentiable	the function is						
4	A. $2x - 5$	$\frac{B}{B} = 5 - 2x$						
5	U. 1 If the potter is trying to make a pot using	D. 5 The function $f(x) = [x]$ will be get a pot or						
5	not? Why?	f the function $f(x) = [x]$, with the get a pot of						
	A. Yes, because it is a	B. Yes, because it is not						
	continuous function	continuous						
	C. No, because it is not	D. No, because it is not						
CS	The shape of a toy is given as $f(x) = 6(2)$	$x^4 - x^2$) To						
2	make the toy beautiful 2 sticks	which are						
	perpendicular to each other were placed	d at a point						
	(2,3), above the toy.							
		Manager and a state of the stat						
1	Which yolus from the following may be ob	aciana of aritical point?						
T								
	A. $\pm \frac{1}{4}$	$D. \pm \frac{1}{2}$						
	<u>C. ±1</u>	D. None						
2	A 360	$\frac{1}{B} = 360$						
	1	1						
	C. $\frac{1}{360}$	D. $-\frac{1}{360}$						

3	What will be the equation of the tangent at	t the critical point if it passes through (2,3)?				
	A. x + 360 y = 1082	B. y = 360 x − 717				
	C. x = 717 y + 360	D. None				
4	Find the second order derivative of the fur	nction at x = 5.				
	A. 598	B. 1176				
	C. 3588	D. 3312				
5	At which of the following intervals will f(x)	be increasing?				
	A. $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$	B. $\left(-\frac{1}{2},0\right) \cup \left(\frac{1}{2},\infty\right)$				
	C. $\left(0,\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$	D. $\left(-\infty, -\frac{1}{2}\right) \cup \left(0, \frac{1}{2}\right)$				
CS	There is a toy in the form of a curve, whose	se equation is				
3	given by $y = f(x)$. To make it a look more streight sticks are crefted over it. Using	Point of Contact				
	answer the following with reference to the	e curve $f(x) = -$				
	$(x-3)^2$:	Tangent				
		Curve				
1	A student wants to draw a straight line which touches the parabolic curve given above					
	at a specific point say (2, 1). The equation of this line is					
	A. $2x + y + 5 = 0$	B. $x + 2y = 5$				
	C. $2x + y = 0$	D. 2x + y = 5				
2	Slope of the tangent to the parabolic curve	e given above at (3, 0) is				
	A. 0	B. 1				
	C. 2	D1				
3	The normal to the curve $y = (x - 3)^2$ at (3,	0) is				
	A. Parallel to $x - axis$	B. Parallel to y – axis				
	C. Perpendicular to y – axis	D.Can not be determine.				
4	The point on the given curve $y = (x - 3)^2$, where the tangent is parallel to the line					
	joining the points $(4, 1)$ and $(3, 0)$ is	(7.4)				
	A. (1, 7)	B. $(\frac{7}{2}, \frac{1}{4})$				
	C. (-7, 1)	D. (7, 4)				
5	The product of slopes of tangent and norn	nal to the given curve, at (2, 1) is				
	A. 0	B. 1				
	C. – 1	D. 2				

CS	Assuming that two ships follow the path of y^2 and $Q_{11}y^2$ in the page $(1, 1)$								
4	There are high chances that these ships $x = y^{2}$								
	may cross the path traced by each other.								
	$\langle \cdot \rangle$								
1	The points of intersection for the path trac	ed by the ships (intersection of curves) are							
	A. (0, 0), (1, ±1)	B. (0, 0), (±1, 1)							
	C. (0, - 1), (1, 0)	D.(1, 0), (0, 1)							
2	What are the number of points at which th	ne given two curves intersect?							
	A. 2	B. 1							
	C. 3	D. 0							
3	The slope of the curve $x = y^2$ at the point of	of intersection of both the given curves is							
	A. $\frac{1}{2}, -\frac{1}{2}, \frac{1}{0}$ (not defined)	B. $\frac{1}{2}$, 0							
	C. $-\frac{1}{2}, \frac{1}{6}$ (not defined)	D. $\frac{1}{2}$, $\frac{1}{0}$ (not defined)							
4	The slope of tangent to the curve $y = x^2$ at the point of intersection of both the given								
	curves, is	5.0.0							
	A. 0, 2	B. 2, - 2							
	C. 0, - 1	D. 2, - 2, 0							
5	The angle of intersection of both the curve								
	A. π , tan ⁻¹ $\frac{3}{4}$	B. $\frac{\pi}{2}$, $\tan^{-1}\frac{\pi}{3}$							
	C. $\frac{\pi}{2}$, tan ⁻¹ $\frac{3}{4}$	D. $-\frac{\pi}{2}$, $\tan^{-1}\frac{3}{4}$							
CS	$P(x) = -5x^2 + 125x + 37500$ is the total profit function								
5	of a company, where x is the production of the								
	company.								
		EROF							
1	What will be the production when the prof	it is maximum?							
	A. 37500	B. 12.5							
	C. – 12.5	D. – 37500							
2	What will be the maximum profit?	B Dc 38281 25							
	A. 13.30,20,123	D. 1(3.30201.23							
	C. Rs.39,000	D. None							
3	Check in which interval the profit is strictly	/ Increasing.							
	A. (12.3, ~)								
	C. For all positive real numbers	D. (0, 12.5)							

4	When the production is 2 units what will be the profit of the company?				
	A. 37500	B. 37,730			
	C. 37,770	D. None			
5	What will be production of the company w	hen the profit is Rs. 38,250?			
	A. 15	B. 30			
	C. 2	D. Data is not sufficient to find			
CS	The Relation between the height of the	plant (y in			
6	cm) with respect to exposure to sunlight i	s governed			
	by the following equation $y = 4x - \frac{1}{2}x^2$	where x is			
	the number of days exposed to sunlight.				
1	The rate of growth of the plant with respec	ct to sunlight is			
	A. $4x - \frac{1}{2}x^2$	B. 4 – x			
	C. x – 4	D. $x - \frac{1}{2}x^2$			
2	What is the number of days it will take for	the plant to grow to the maximum height?			
	A. 4	B. 6			
	C. 7	D. 10			
		-			
3	What is the maximum height of the plant?	D 40 cm			
	A. 12 cm	B. 10 cm			
	C. 8 cm	D. 6 cm			
4	What will be the height of the plant after 2	days?			
	A. 4 cm	B. 6 cm			
	C. 8 cm	D. 10 cm			
5	If the height of the plant is $\frac{7}{2}$ cm, the nu	umber of days it has been exposed to the			
	sunlight is				
	A. 2	В. 3			
	C. 4	D. 1			
CS	An architect designs a building for a mult	ti-national company. The floor consists of a			
7	rectangular region with semicircular end	ds having a perimeter of 200m as shown			
	Design of Floor				
	Building				
	$A \qquad y \qquad \frac{y}{2}$				

	Based on the above information answer the following:							
1	If x and y represent the length and breadth of the rectangular region, then the relation between the variables is							
	A. $x + \pi y = 100$	B. 2x + π y = 200						
	C. $\pi x + y = 50$	D.x + y = 100						
2	The area of the rectangular region A expre	essed as a function of x is						
	A. $\frac{2}{\pi}(100x - x^2)$	B. $\frac{1}{\pi}(100x - x^2)$						
	C. $\frac{x}{\pi}(100-x)$	D. $\pi y^2 + \frac{2}{\pi}(100x - x^2)$						
3	The maximum value of area A is							
	A. $\frac{\pi}{3200}m^2$	B. $\frac{3200}{\pi}m^2$						
	C. $\frac{5000}{\pi}m^2$	D. $\frac{1000}{\pi}m^2$						
4	The CEO of the multi-national company whole floor including the semi-circular en	is interested in maximizing the area of the ds. For this to happen the valve of x should						
	be							
	A. 0 m	B. 30 m						
	C. 50 m	D. 80 m						
5	The extra area generated if the area of the	e whole floor is maximized is :						
	A. $\frac{3000}{\pi}m^2$	B. $\frac{3000}{\pi}m^2$						
	C. $\frac{7000}{\pi}m^2$	D. No change. Both areas are equal						
CS	Sonam wants to prepare a sweet b	oox for Diwali at						
8	home. For making lower part of be	ox, she takes a						
	above information, answer the following questions.							
		The state						
	Based on the above information, Ans questions.	wer the following						
1	If x cm be the length of each side of the s	square cardboard which is to be cut off from						
	corner of the square piece of side 18 cm,	then x must lie in						
	A. [0, 18]	B. (0, 9)						
	C. (0, 3)	D. None of these.						
2	Volume of the open box formed by folding	up the cutting corner can be expressed as						
	A. $V = x(18 - 2x)(18 - 2x)$	B. $V = \frac{x}{2}(18 + x)(18 - x)$						
	C. $V = \frac{x}{3}(18 - 2x)(18 + 2x)$	D. $V = x(18 - 2x)(18 - x)$						

3	The values of x for which $\frac{dV}{dx} = 0$, are					
	A. 3, 2	B. 0, 3				
	C. 0, 9	D. 3, 9				
4	Sonam is interested in maximizing the vol of the square to be cut off so that the volu	ume of the box. So, what should be the side me of the box is maximum?				
	A. 13 cm	B. 8 cm				
	C. 3 cm	D. 2 cm				
5	The maximum value of the volume is					
	A. 144 cm ³	B. 232 cm ³				
	C. 256 cm ³	D. 432 cm ³				

ANSWERS:

1.B	2.B	3.D	4.A	5.C	6.A	7.A	8.B	9.D	10.B
11.A	12.C	13.A	14.D	15.D	16.A	17.A	18.A	19.A	20.B
21.D	22.D	23.A	24.A	25.C	26.D	27.A	28.A	29.A	30.A
31.A	32.A	33.A	34.A	35.C	36.D	37.A	38.A	39.C	40.B
41.C	42.B	43.A	44.C	45.C	46.A				

CASE STUDY:

Case Study-1	1.C	2.A	3.C	4.C	5.D
Case Study-2	1.B	2.D	3.B	4.C	5.B
Case Study-3	1.D	2.A	3.B	4.B	5.C
Case Study-4	1.B	2.C	3.D	4.D	5.C
Case Study-5	1.B	2.B	3.D	4.B	5. A
Case Study-6.	1.B	2.A	3.C	4.B	5.D
Case Study-7.	1.B	2.A	3.C	4.A	5.D
Case Study-8.	1.B	2.A	3.D	4.C	5.D

MULTIPLE CHOICE QUESTIONS

 constraints are (0, 0), (0,40), (20,40), (60,20), (60,0). The objective function Compare the quantity in Column A and Column B Column A Column B Maximum of Z 325 (a) The quantity in column A is greater (b) The quantity in column B is greater 	n is					
Compare the quantity in Column A and Column B Column A Column B Maximum of Z 325 (a) The quantity in column A is greater (b)The quantity in column B is greater						
Column A Column B Maximum of Z 325 (a) The quantity in column A is greater (b)The quantity in column B is greater						
Column A Column B Maximum of Z 325 (a) The quantity in column A is greater (b)The quantity in column B is greater						
Maximum of Z 325 (a) The quantity in column A is greater (b)The quantity in column B is greater						
(a) The quantity in column A is greater (b) The quantity in column B is						
greater greater						
(c) The two quantities are equal. (d) The relationship cannot be						
determined on the basis of the	3					
information supplied.						
2. The feasible solution for a LDD is shown in given figure 1 at 7. 20	1 he ha					
the objective function. Minimum of 7 occurs at	-4y be					
the objective function. Minimum of 2 occurs at						
\uparrow						
(4, 10)						
(0, 8)						
•(6, 5)	(6, 5)					
(o,o) (5,0)						
(a) (0,0) (b) (0,8)						
(c) (5,0) (d) (4,10)						
3 Corner points of the feasible region determined by the system of linear						
constraints are (0.3) , (1.1) and (3.0) . Let Z= px+qy, where p, q>0. Condi	tion on					
p and g so that the minimum of Z occurs at (3.0) and (1.1) is						
(a) $p=2q$ (b) $p=q/2$						
(c) $p=3q$ (d) $p=q$						
4 The set of all feasible solutions of a LPP is a set.	I					
(a) Concave (b) Convex						
(c) Feasible (d) None of these						
5 Corner points of the feasible region for an LPP are (0.2) (3.0) (6.0) (6.	8) and					
(0, E) Let E Ave 6v be the objective function. Maximum of E. Minimum	of $F =$					
(0.5). Let $r = 4x + 6y$ be the objective function. Maximum of $r = Minimum$						
(0,5). Let $F=4x+6y$ be the objective function. Maximum of $F = Minimum$ (a) 60 (b) 48						

6	In a LPP, if the objective function $Z = a$	(+by has	the same maximum value on						
	ioining these two points give the same	inen ev	alue						
	(a) minimum	(h) r	maximum						
	(c) zero	(d) r	none of these						
		()							
7	In the feasible region for a LPP is, then the optimal value of the objective function $Z = ax+bymayormaynot exist$								
	(a) bounded	(b)	unbounded						
	(c) in circled form	(d)	in squared form						
8	 A linear programming problem is one the of a linear function calledB function subject to the conditions that the variable inequalities called linear constraints. (a) Objective, optimal value, negative 	at is con n of seve les are (b) Op negative	timal value, objective,						
	(c) Optimal value, objective, non-	(d) Ob	jective, optimal value, non-						
		-							
9	Maximum value of the objective functio	n Z = ax-	+by in a LPP always occurs at						
	(a) true	(b) f							
	(c) can't say	(d) r	partially true						
10		()							
10	Region represented by $x \ge 0, y \ge 0$ is:	(h) C	accord quadrant						
	(a) First quadrant	(d) E	ourth quadrant						
		(u) 1 (
11	Z =3x + 4y, Subject to the constraints x+y 1, x,y ≥ 0 the shaded region shown in the figure a thecoordinatesof corner points O, A and respectively.	Is OAB is d B are ((s bounded and 0,0),(1,0) and (0,1),						
	(a) true	(b)	false						
	(c) can't say	(d)	partially true						
		(~)							

12 The feasible region for an LPP is shown shaded in the figure. Let Z = 3x-4y be objective function. Maximum value of Z is: (6, 16), (6, 12) (0, 4 (0, 0) (6, 0) 0 8 (a) (b) 12 -18 (c) (d) 13 The maximum value of Z = 4x+3y, if the feasible region for an LPP is as shown below, is (0. 40) C(0, 24) B(16, 16) (48, 0) Ó (25, 0) 112 100 (b) (a) (c) 72 (d) 110 The feasible region for an LPP is shown shaded in the figure. Let Z = 4x-3y be 14 objective function. Maximum value of Z is: (12, 6) (0, 4) 1(0,0) 1(12,0) (a) 0 (b) 8 (C) 30 (d) -18

15	In the given figure, the feasible region for a LPP is shown. Find the maximum									
	and minimum value of $z = x+zy$.									
	$\begin{pmatrix} \frac{3}{13}, \frac{24}{13} \end{pmatrix} \land \qquad \qquad$									
	$\int_{Y'} S\left(\frac{18}{7}, \frac{2}{7}\right)$									
	(a) 8, 3.2	(b) 9, 3.14								
	(c) 9, 4	(d) none of these								
16	The linear programming problem minim x+y8, 3x+5y 15, x,y ≥0, has	nize Z= 3x+2y,subject to constraints								
	(a) One solution	(b) No feasible solution								
	(c) Two solutions	(d) Infinitely many solutions								
17	The graph of the inequality $2x+3y > 6$ i	S:								
	(a) half plane that contains the	(b) half plane that neither								
	origin	contains the origin nor the points of								
	(c) whole XOX-plane excluding the	$\frac{1}{2} \frac{1}{2} \frac{1}$								
	points on the line $2x+3y = 6$									
18	Of all the points of the feasible region for	maximum or minimum of objective								
	function the points									
	(a) Inside the feasible region	(b) At the boundary line of the								
	(a) Martay point of the boundary of	reasible region								
	the feasible region	(d) None of these								
19	The maximum value of the object function	n Z = 5x + 10 y subject to the constraints								
	$x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x \ge 0$, y ≥ 0 is								
	(a) 300	(b) 600								
	(c) 400	(d) 800								
20	$Z = 6x + 21 y$, subject to $x + 2y \ge 3$, $x + 4$	$y \ge 4, 3x + y \ge 3, x \ge 0, y \ge 0$. The								
	minimum value of Z occurs at									
	(a) (4, 0)	(b) $(28, 8)$								
	(C) (2,2/7)	(d) (0, 3)								
21	Shape of the feasible region formed by the	the following constraints $x + y \le 2$,								
	$x + y \ge 5, x \ge 0, y \ge 0$									
	(a) No feasible region	(b) Triangular region								
	(c) Unbounded solution	(d) Trapezium								
22	Maximize $Z = 4x + 6y$, subject to $3x + 2y$	$\leq 12, x + y \geq 4, x, y \geq 0.$								
	(a) 16 at (4, 0)	(b) 24 at (0, 4)								
	(c) 24 at (6, 0)	(d) 36 at (0, 6)								

23 Feasible region for an LPP shown shaded in the following figure. Minimum of Z = 4x+3y occurs at the point:

	Y D (0, 8) Feasib Region C (2, 5) B (^{A, 3}) A (9, 0	le n) → X
	(a) (0,8)	(b) (2,5)
	(c) (4,3)	(d) (9,0)
24	The region represented by the inequalitie	S
	$x \ge 6, y \ge 2, 2x + y \le 0, x \ge 0, y \ge 0$ is	
	(a) unbounded	(b) a polygon
	(c) exterior of a triangle	(d) None of these
25	Minimize $7 = 13x - 15y$ subject to the co	$x + y \le 7$ $2x - 3y + 6 \ge 0$ $x \ge 0$
20	$0. v \ge 0.$	$\frac{1}{1000} + \frac{1}{1000} + 1$
	-, y = -:	
	(a) -23	(b) -32
	(c) -30	(d) -34

Answer Key:-

Q: 1	b	Q: 2	b	Q: 3	b	Q: 4	а	Q: 5	а
Q: 6	b	Q: 7	b	Q: 8	С	Q: 9	b	Q: 10	а
Q: 11	b	Q: 12	а	Q: 13	а	Q: 14	С	Q: 15	b
Q: 16	b	Q: 17	b	Q: 18	С	Q: 19	b	Q: 20	С
Q: 21	а	Q: 22	d	Q: 23	b	Q: 24	d	Q: 25	С

ASSERTION AND REASONING TYPE QUESTIONS

1. **Assertion (A):** Feasible region is the set of points which satisfy all of the given constraints.

Reason (R): The optimal value of the objective function is attained at the points on X-axisonly.

A. Both A and R are true and R is the correct explanation ofr A

B. Both A and R are true but R is NOT the correct explanation of A

C. A is true but R is false.

D. A is false but R is true.

E. Both A and R are false.

2. **Assertion (A):** It is necessary to find objective function value at every point in the feasible region to find optimum value of the objective function.

Reason(R):For the constrains $2x+3y \le 6$, $5x+3y \le 15$, $x \ge 0$ and $y \ge 0$ cornner points of the feasible region are (0,2), (0,0) and (3,0).

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.
- 3. **Assertion (A):** It is necessary to find objective function value at every point in the feasible region to find optimum value of the objective function.

Reason(R):For the constrains $2x+3y \le 6$, $5x+3y \le 15$, $x \ge 0$ and $y \ge 0$ cornner points of the feasible region are (0,2), (0,0) and (3,0).

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

Assertion (A) : For the constraints of linear optimizing function Z = x₁+ x₂ given by x₁+ x₂≤1, 3x₁ + x₂≥1,x≥0 and y≥0 there is no feasible region.

Reason (R): Z = 7x + y, subject to 5x + y \leq 5, x + y \geq 3, x \geq 0, y \geq 0. The corner points of the feasible region are $\left(\frac{1}{2}, \frac{5}{2}\right)(0,3)$ and (0,5).

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

7. Assertion (A): The maximum value of Z = 11x+7y Subject to the constraints are 2x+y≤6, x≤2, x,y≥0.
Occurs at the point (0,6).
Reason (R): If the feasible region of the given LPP is bounded, then the maximum and minimum values of the objective function occurs at corner points.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

 Assertion (A): If an LPP attains its maximum value at two corner points of the feasible region then it attains maximum value at infinitely many points.
 Reason (R): if the value of the objective function of a LPP is same at two corners then it is same at every point on the line joining two corner points.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

9. Consider, the graph of constraints stated as linear inequalities as below: $5x+y \le 100$, $x+y \le 60$, $x,y \ge 0$.

Assertion (A): The points (10,50), (0,60), (10,10) and (20,0) are feasible solutions.

Reason (R): Points within and on the boundary of the feasible region represent feasible solutions of the constraints.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

10. Consider, the graph of constraints stated as linear inequalities as below: $5x+y \le 100$,

x+y≤60,

x,y≥0.

Assertion (A): (25,40) is an infeasible solution of the problem. Reason (R): Any point inside the feasible region is called an infeasible solution.

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

11. Assertion (A): The region represented by the set $\{(x,y): 4 \le x^2 + y^2 \le 9\}$ is a convex set.

Reason (R): The set {(x,y): $4 \le x^2 + y^2 \le 9$ } represents the region between two concentric circles of radii 2 and 3.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

12. Assertion (A):For an objective function Z= 15x + 20y, corner points are (0,0), (10,0), (0,15) and (5,5). Then optimal values are 300 and 0 respectively.

Reason (R):The maximum or minimum value of an objective function is known as optimal value of LPP. These values are obtained at corner points.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

13. Assertion (A): For the LPP Z= 3x+2y, subject to the constraints $x+2y \le 2$; $x \ge 0$; $y \ge 0$ both maximum value of Z and Minimum value of Z can be obtained.

Reason (R):If the feasible region is bounded then both maximum and minimum values of Z exists.

A. Both A and R are true and R is the correct explanation of A

- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.

- D. A is false but R is true.
- E. Both A and R are false.

14. Assertion (A): The linear programming problem, maximize Z = x+2y subject to constraints $x-y \le 10, 2x + 3y \le 20$ and $x \ge 0$; $y \ge 0$. It gives the maximum value of Z as 40/3.

Reason (R):To obtain maximum value of Z, we need to compare value of Z at all the corner points of the shaded region.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.
- 15.Assertion (A):Consider the linear programming problem. Maximise Z=4x+y Subject to constraints x+ y≤50; x+ y≥100 and x, y ≥0. Then, maximum value of Z is 50.

Reason (R):If the shaded region is bounded then maximum value of objective function can be determined.

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false.
- D. A is false but R is true.
- E. Both A and R are false.

CASE STUDY

CS 1	A train can carry a maximum of 300 passengers. A profit of Rs. 800 is made on each executive class and Rs. 200 is made on each economy class. The IRCTC reserves at least 40 tickets for executive class. However, atleast 3 times as many passengers prefer to travel by economy class, than by executive class. It is given that the number of executive class ticket is Rs. x and that of economy class ticket is Rs. y. Optimize the given problem. Based on the above information, answe	er the following questions.						
1	The objective function of the LPP is:							
	(a) Maximise Z = 800x + 200y	(b) Maximise Z = 200x + 800y						
	(c) Minimise Z = 800x + 200y	(d) Minimise Z = 200x + 800y						
2	Which among these is a constraint for this LPP?							
	(a) x+y≥300	(b) y≥3x						
	(c) x≤40	(d) y≤3x						
3	Which among these is not a corner poir	t for this LPP?						
	(a) (40,120)	(b) (40, 260)						
	(c) (30, 90)	(d) (75, 225)						
4	The maximum profit is:							
	(a) Rs.56000	(b) Rs. 84000						
	(c) Rs. 205000	(d) Rs. 105000						
5	Which corner point the objective function	n has minimum value?						
	(a) (40,120)	(b) (40, 260)						
	(c) (30, 90)	(d) (75, 225)						
CS 2	A manufacturing company makes two	models X and Y of a product. Each piece of						

model X requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model Y requires 12 labour hours of fabricating and 3 labour hours for finishing, the maximum labour hours available for fabricating and finishing are 180 and 30 respectively. The company makes a profit of Rs. 8000 on each piece of model X and Rs. 12000 on each piece of model Y. Assume x is the number of pieces of model X and y is the number of pieces of model Y.

Based on the above information, answer the following questions.

1	Which among these is not a constraint for this LPP?						
	(a) 9x+12y≥180	(b) 3x+4y≤60					
	(c) x+3y≤30	(d) None of these					
2	The shape formed by the common feasible region is:						
	(a) Triangle	(b) Quadrilateral					
	(c) Pentagon	(d) hexagon					
3	Which among these is a corner point for this LPP?						
	(a) (0,20)	(b) (6,12)					
	(c) (12,6)	(c) (10,0)					
4	Maximum of Z occurs at						
	(a) (0,20)	(b) (0,10)					
	(c) (20,10)	(d) (12,6)					
5	The sum of maximum value of Z is:						
	(a) 168000	(b) 160000					
	(c) 120000	(d) 180000					

CS 3	Suppose a dealer in rural area wishes to purchase a number of sewing machines. He has only Rs. 5760 to invest and has space for atmost 20 items for storage. An electronic sewing machine costs him Rs. 360 and a manually operated sewing machine Rs. 240. He can sell an electronic sewing machine at a profit of Rs. 22 and a manually operated sewing machine at a profit of Rs.18. Based on the above information, answer the following questions.									
1	Let x and y denote the number of electronic sewing machines and manually									
	operated sewing machines purchased by the dealer. If it is assumed that the									
	dealer purchased atleast one of the given machines then:									
	(a) $x+y \ge 0$	(b) $x+y < 0$								
	(c) x+y> 0	(c) x+y≤ 0								
2	Let the constraints in the given problem is represented by the following									
	Inequalities: x+y<20: 360x+240y<5760 and x y>0. Then which of the following point lie in its									
	feasible region.									
	5									
	(a) (0,24)	(b) (8,12)								
	(c) (20,2)	(d) None of these								
3	If the objective function of the given problem is maximize $Z = 22x+18y$, then its optimal value occur at:									
	(a) $(0,0)$	(b) (16.0)								
4										
4	Suppose the following shaded region APDO, represent the feasible region									
	Then which of the following represent th	e coordinates of one of its corner points.								
	(a) (0,24)	(b) (12,8)								
	(c) (8,12)	(d) (6,14)								
5	If an LPP admits optimal solution at two	consecutive vertices of a feasible region,								
	then									
	(a) The required optimal solution	(b) The optimal solution occurs at								
	is at a mid pointof the line joining two	every point on the line joining these two								
	points.	points.								
	(c) The LPP under consideration	(d) The LPP under consideration								
	is not solvable.	must be reconstructed.								

ANSWERS:

ASSERTION AND REASONING

1	С	2	D	3	D	4	А	5	А
6	А	7	А	8	А	9	А	10	С
11	D	12	Α	13	А	14	Α	15	D

CASE STUDY

CS-1	1) A	2) B	3) C	4) D	5) A
CS-2	I) A	2) B	3) C	4) D	5) A
CS-3	I)C	2) B	3) C	4) C	5) B

